Effect of Ribbon Width and Doping Concentration on Device Performance of Graphene Nanoribbon Tunneling Field-Effect Transistors

被引:4
|
作者
Lam, Kai-Tak [1 ]
Chin, Sai-Kong [2 ]
Seah, Da Wei [1 ]
Kumar, S. Bala [1 ]
Liang, Gengchiau [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119260, Singapore
[2] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
关键词
STATE; EDGE;
D O I
10.1143/JJAP.49.04DJ10
中图分类号
O59 [应用物理学];
学科分类号
摘要
The device performance of graphene nanoribbon (GNR) tunneling field-effect transistor (TFET) is studied using the self-consistent non-equilibrium Green's function (NEGF) and quasi-two dimensional Poisson solver based on the Dirac equation model. The effects of different GNR widths and doping concentrations at the source and drain on the device characteristics are investigated and the electronic property of the GNR TFET is found to be strongly dependent on its width. A comprehensive characterization of this dependence is expected to be crucial to the designs and fabrications of GNR TFETs. Furthermore, the doping concentrations at the source and drain is found to play a crucial role on the ON-and OFF-state currents (I-ON and I-OFF) respectively. Therefore, the ability to control the doping concentrations allows the tailoring of the drive current, the I-ON=I-OFF ratio and the subthreshold swing of GNR TFETs to meet different design requirements. (C) 2010 The Japan Society of Applied Physics
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Graphene nanoribbon field-effect transistors
    Thornhill, Stephen
    Wu, Nathanael
    Wang, Z. F.
    Shi, Q. W.
    Chen, Jie
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 169 - +
  • [2] Graphene nanoribbon tunneling field effect transistors
    Mohamadpour, Hakimeh
    Asgari, Asghar
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2012, 46 : 270 - 273
  • [3] Performance projections for ballistic graphene nanoribbon field-effect transistors
    Liang, Gengchiau
    Neophytou, Neophytos
    Nikonov, Dmitri E.
    Lundstrom, Mark S.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (04) : 677 - 682
  • [4] Influence of contact doping on graphene nanoribbon heterojunction tunneling field effect transistors
    Da, Haixia
    Lam, Kai-Tak
    Samudra, Ganesh S.
    Liang, Gengchiau
    Chin, Sai-Kong
    SOLID-STATE ELECTRONICS, 2012, 77 : 51 - 55
  • [5] Performance limits of graphene-ribbon field-effect transistors
    Munoz-Rojas, F.
    Fernandez-Rossier, J.
    Brey, L.
    Palacios, J. J.
    PHYSICAL REVIEW B, 2008, 77 (04)
  • [6] Simulation of graphene nanoribbon field-effect transistors
    Fiori, Gianluca
    Iannaccone, Giuseppe
    IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) : 760 - 762
  • [7] Room-Temperature Graphene-Nanoribbon Tunneling Field-Effect Transistors
    Hwang, Wan Sik
    Zhao, Pei
    Kim, Sung Geun
    Yan, Rusen
    Klimeck, Gerhard
    Seabaugh, Alan
    Fullerton-Shirey, Susan K.
    Xing, Huili Grace
    Jena, Debdeep
    NPJ 2D MATERIALS AND APPLICATIONS, 2019, 3 (1)
  • [8] Graphene Nanoribbon Tunneling Field-Effect Transistors With a Semiconducting and a Semimetallic Heterojunction Channel
    Da, Haixia
    Lam, Kai-Tak
    Samudra, G.
    Chin, Sai-Kong
    Liang, Gengchiau
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (05) : 1454 - 1461
  • [9] Room-Temperature Graphene-Nanoribbon Tunneling Field-Effect Transistors
    Wan Sik Hwang
    Pei Zhao
    Sung Geun Kim
    Rusen Yan
    Gerhard Klimeck
    Alan Seabaugh
    Susan K. Fullerton-Shirey
    Huili Grace Xing
    Debdeep Jena
    npj 2D Materials and Applications, 3
  • [10] Device Performance of Graphene Nanoribbon Field-Effect Transistors in the Presence of Line-Edge Roughness
    Goharrizi, Arash Yazdanpanah
    Pourfath, Mahdi
    Fathipour, Morteza
    Kosina, Hans
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (12) : 3527 - 3532