Non-volatile memory based on solid electrolytes

被引:90
|
作者
Kozicki, MN [1 ]
Gopalan, C [1 ]
Balakrishnan, M [1 ]
Park, M [1 ]
Mitkova, M [1 ]
机构
[1] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA
关键词
electrodeposition; non-volatile memory; resistance change; solid electrolyte;
D O I
10.1109/NVMT.2004.1380792
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Programmable Metallization Cell (PMC) memory utilizes electrochemical control of nanoscale quantities of metal in thin films of solid electrolyte. A silver or copper layer and an inert electrode formed in contact with a Ag+- or Cu2+-containing electrolyte film creates a device in which information is stored using large non-volatile resistance change caused by the reduction of the metal ions. Key attributes are low voltage, low current, rapid write and erase, good retention and endurance, and the ability for the storage cells to be physically scaled to a few tens of nm. This paper describes the principle of operation of PMC devices and presents representative results from cells with diameters ranging from micron scale to nanoscale dimensions based on Ag-Ge-Se, Ag-Ge-S, and CU-WO3 solid electrolytes.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [21] Non-volatile memory based on the ferroelectric photovoltaic effect
    Guo, Rui
    You, Lu
    Zhou, Yang
    Lim, Zhi Shiuh
    Zou, Xi
    Chen, Lang
    Ramesh, R.
    Wang, Junling
    NATURE COMMUNICATIONS, 2013, 4
  • [22] Non-volatile optoelectronic memory based on a photosensitive dielectric
    Rui Zhu
    Huili Liang
    Shangfeng Liu
    Ye Yuan
    Xinqiang Wang
    Francis Chi-Chung Ling
    Andrej Kuznetsov
    Guangyu Zhang
    Zengxia Mei
    Nature Communications, 14
  • [23] Non-volatile optoelectronic memory based on a photosensitive dielectric
    Zhu, Rui
    Liang, Huili
    Liu, Shangfeng
    Yuan, Ye
    Wang, Xinqiang
    Ling, Francis Chi-Chung
    Kuznetsov, Andrej
    Zhang, Guangyu
    Mei, Zengxia
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [24] Zwitterionic materials with disorder and plasticity and their application as non-volatile solid or liquid electrolytes
    Faezeh Makhlooghiazad
    Luke A. O’Dell
    Luca Porcarelli
    Craig Forsyth
    Nurul Quazi
    Mousa Asadi
    Oliver Hutt
    David Mecerreyes
    Maria Forsyth
    Jennifer M. Pringle
    Nature Materials, 2022, 21 : 228 - 236
  • [25] Non-volatile Memory Devices Based on Chalcogenide Materials
    Wang, Fei
    Wu, Xiaolong
    PROCEEDINGS OF THE 2009 SIXTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, VOLS 1-3, 2009, : 5 - +
  • [26] Chalcogenide-based non-volatile memory technology
    Maimon, J
    Spall, E
    Quinn, R
    Schnur, S
    2001 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-7, 2001, : 2289 - 2294
  • [27] Memristive Non-Volatile Memory Based on Graphene Materials
    Shen, Zongjie
    Zhao, Chun
    Qi, Yanfei
    Mitrovic, Ivona Z.
    Yang, Li
    Wen, Jiacheng
    Huang, Yanbo
    Li, Puzhuo
    Zhao, Cezhou
    MICROMACHINES, 2020, 11 (04)
  • [28] Non-volatile Memory Devices Based on Diphenyl Bithiophenes
    Canesi, E. V.
    Bertarelli, C.
    Bianco, A.
    Caironi, M.
    Dassa, G.
    Natali, D.
    Rottigni, A.
    Sampietro, M.
    Zerbi, G.
    SMART MATERIALS & MICRO/NANOSYSTEMS, 2009, 54 : 458 - 463
  • [29] Non-volatile memory based on the ferroelectric photovoltaic effect
    Rui Guo
    Lu You
    Yang Zhou
    Zhi Shiuh Lim
    Xi Zou
    Lang Chen
    R. Ramesh
    Junling Wang
    Nature Communications, 4
  • [30] Non-Volatile Photonic Memory Based on a SAHAS Configuration
    Olivares, Irene
    Parra, Jorge
    Sanchis, Pablo
    IEEE PHOTONICS JOURNAL, 2021, 13 (02):