Soliton solutions of coupled Maxwell-Bloch equations

被引:8
|
作者
Chakravarty, S. [1 ]
机构
[1] Univ Colorado, Dept Math, Colorado Springs, CO 80918 USA
基金
美国国家科学基金会;
关键词
Maxwell-Bloch equations; Solitons; Conservation laws; Trace formulae; SELF-INDUCED TRANSPARENCY; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; OPTICAL-PULSE-PROPAGATION; MEDIA; INVERSION;
D O I
10.1016/j.physleta.2015.10.031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study the soliton solutions of the coupled Maxwell-Bloch equations which describe pulse propagation in an active optical medium with coherent three-level atomic transitions and inhomogeneous broadening. The soliton solutions and polarization shifts due to soliton interactions are investigated. An infinite set of conservation laws as well as the soliton trace formulae are derived. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1141 / 1150
页数:10
相关论文
共 50 条
  • [21] MULTISOLITON SOLUTIONS OF A COUPLED SYSTEM OF THE NONLINEAR SCHRODINGER-EQUATION AND THE MAXWELL-BLOCH EQUATIONS
    KAKEI, S
    SATSUMA, J
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (03) : 885 - 894
  • [22] NUMERICAL-SOLUTIONS OF THE MAXWELL-BLOCH EQUATIONS FOR A FIBER AMPLIFIER
    GROSS, B
    MANASSAH, JT
    OPTICS LETTERS, 1992, 17 (05) : 340 - 342
  • [23] Darboux transformations and solutions of nonlocal Hirota and Maxwell-Bloch equations
    An, Ling
    Li, Chuanzhong
    Zhang, Lixiang
    STUDIES IN APPLIED MATHEMATICS, 2021, 147 (01) : 60 - 83
  • [24] Numerical solutions to 2D Maxwell-Bloch equations
    Xiong, Jingyi
    Colice, Max
    Schlottau, Friso
    Wagner, Kelvin
    Fornberg, Bengt
    OPTICAL AND QUANTUM ELECTRONICS, 2008, 40 (5-6) : 447 - 453
  • [25] POWER-SERIES SOLUTIONS TO THE OPTICAL MAXWELL-BLOCH EQUATIONS
    MATULIC, L
    PALMER, C
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1989, 6 (03) : 356 - 363
  • [26] Localized excitations and interactional solutions for the reduced Maxwell-Bloch equations
    Huang, Lili
    Chen, Yong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 : 237 - 252
  • [27] Time discretizations for Maxwell-Bloch equations
    Bidégaray, B
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (03) : 284 - 300
  • [28] ROUTES TO CHAOS IN THE MAXWELL-BLOCH EQUATIONS
    MILONNI, PW
    ACKERHALT, JR
    SHIH, ML
    OPTICS COMMUNICATIONS, 1985, 53 (02) : 133 - 136
  • [29] SOLITONS OF UNSHORTENED MAXWELL-BLOCH EQUATIONS
    ANDREEV, AV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1995, 108 (03): : 796 - 806
  • [30] ON THE MAXWELL-BLOCH EQUATIONS WITH ONE CONTROL
    PUTA, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (07): : 679 - 683