Numerical solutions to 2D Maxwell-Bloch equations

被引:9
|
作者
Xiong, Jingyi [1 ]
Colice, Max [1 ]
Schlottau, Friso [1 ]
Wagner, Kelvin [1 ]
Fornberg, Bengt [2 ]
机构
[1] Univ Colorado, Dept Elect & Comp Engn, Ctr Optoelect Comp Syst, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
关键词
FFT-BPM; Maxwell-Bloch equation; photon echo;
D O I
10.1007/s11082-008-9227-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rare-earth-doped crystals contain inhomogeneously broadened two-level atoms. Optical propagation and nonlinear interaction in the crystals can be described by the Maxwell-Bloch equations. We show a consistent numerical approach that solves Maxwell's equations by using the FFT-finite difference beam propagation method and the Bloch equations by using the finite difference method. Numerical simulation results are given for an off-axis 3-pulse photon echo.
引用
收藏
页码:447 / 453
页数:7
相关论文
共 50 条
  • [1] Simulations of 2D Maxwell-Bloch equations
    Xiong, Jingyi
    Colice, Max
    Schlottau, Friso
    Wagner, Kelvin
    Fornberg, Bengt
    [J]. NUSOD '07: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES, 2007, : 5 - +
  • [2] Numerical solutions to 2D Maxwell–Bloch equations
    Jingyi Xiong
    Max Colice
    Friso Schlottau
    Kelvin Wagner
    Bengt Fornberg
    [J]. Optical and Quantum Electronics, 2008, 40 : 447 - 453
  • [3] Numerical solutions of the Maxwell-Bloch laser equations
    Guo, BY
    Martin, I
    PerezGarcia, VM
    Vazquez, L
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 129 (01) : 181 - 189
  • [4] Numerical Solutions of the Maxwell-Bloch Laser Equations
    Guo, B.-Y.
    Martin, I.
    Perez-Garcia, V. M.
    Vazquez, L.
    [J]. Journal of Computational Physics, 129 (01):
  • [5] NUMERICAL-SOLUTIONS OF THE MAXWELL-BLOCH EQUATIONS FOR A FIBER AMPLIFIER
    GROSS, B
    MANASSAH, JT
    [J]. OPTICS LETTERS, 1992, 17 (05) : 340 - 342
  • [6] COMPLEX SOLUTIONS FOR MAXWELL-BLOCH EQUATIONS
    ANDREEV, VA
    [J]. KVANTOVAYA ELEKTRONIKA, 1983, 10 (10): : 2045 - 2048
  • [7] NUMERICAL EVIDENCE FOR BREAKDOWN OF SOLITON BEHAVIOR IN SOLUTIONS OF MAXWELL-BLOCH EQUATIONS
    CAUDREY, PJ
    EILBECK, JC
    [J]. PHYSICS LETTERS A, 1977, 62 (02) : 65 - 66
  • [8] Soliton solutions of coupled Maxwell-Bloch equations
    Chakravarty, S.
    [J]. PHYSICS LETTERS A, 2016, 380 (11-12) : 1141 - 1150
  • [9] TESTING THE PAINLEVE PROPERTY OF THE MAXWELL-BLOCH AND REDUCED MAXWELL-BLOCH EQUATIONS
    GOLDSTEIN, PP
    [J]. PHYSICS LETTERS A, 1987, 121 (01) : 11 - 14
  • [10] TRAVELING-WAVE SOLUTIONS OF THE MAXWELL-BLOCH EQUATIONS
    ELGIN, JN
    GARZA, JBM
    [J]. PHYSICAL REVIEW A, 1987, 35 (09): : 3986 - 3988