Soliton solutions of coupled Maxwell-Bloch equations

被引:8
|
作者
Chakravarty, S. [1 ]
机构
[1] Univ Colorado, Dept Math, Colorado Springs, CO 80918 USA
基金
美国国家科学基金会;
关键词
Maxwell-Bloch equations; Solitons; Conservation laws; Trace formulae; SELF-INDUCED TRANSPARENCY; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; OPTICAL-PULSE-PROPAGATION; MEDIA; INVERSION;
D O I
10.1016/j.physleta.2015.10.031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study the soliton solutions of the coupled Maxwell-Bloch equations which describe pulse propagation in an active optical medium with coherent three-level atomic transitions and inhomogeneous broadening. The soliton solutions and polarization shifts due to soliton interactions are investigated. An infinite set of conservation laws as well as the soliton trace formulae are derived. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1141 / 1150
页数:10
相关论文
共 50 条
  • [41] Self-oscillation in the Maxwell-Bloch equations
    Wu, Jie
    Armen, Michael A.
    Mabuchi, Hideo
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (10) : 2382 - 2386
  • [42] Rogue waves of the Hirota and the Maxwell-Bloch equations
    Li, Chuanzhong
    He, Jingsong
    Porseizan, K.
    PHYSICAL REVIEW E, 2013, 87 (01)
  • [43] FACTORIZATION ASSUMPTION IN THE SOLUTION OF MAXWELL-BLOCH EQUATIONS
    MATULIC, L
    SANCHEZMONDRAGON, JJ
    TORRESCISNEROS, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1734 - 1734
  • [44] Lattices of Neumann oscillators and Maxwell-Bloch equations
    Saksida, Pavle
    NONLINEARITY, 2006, 19 (03) : 747 - 768
  • [45] Integrability and geometric prequantization of Maxwell-Bloch equations
    Puta, M
    BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (03): : 243 - 250
  • [46] On soliton and periodic solutions of Maxwell-Bloch system for two-level medium with degeneracy
    Lebele, SB
    Ustinov, NV
    CHAOS SOLITONS & FRACTALS, 2000, 11 (11) : 1763 - 1772
  • [47] The Maxwell-Bloch equations on fractional Leibniz algebroids
    Ivan, Mihai
    Ivan, Gheorghe
    Opris, Dumitru
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2008, 13 (02): : 50 - 58
  • [48] Homoclinic orbits in the Maxwell-Bloch equations with a probe
    Holm, DD
    Kovacic, G
    Wettergren, TA
    PHYSICAL REVIEW E, 1996, 54 (01): : 243 - 256
  • [49] Semiconductor laser theory: The Maxwell-Bloch equations
    不详
    SPATIO-TEMPORAL DYNAMICS AND QUANTUM FLUCTUATIONS IN SEMICONDUCTOR LASERS, 2003, 189 : 13 - 24
  • [50] ANALYTIC SOLUTIONS OF BLOCH AND MAXWELL-BLOCH EQUATIONS IN THE CASE OF ARBITRARY FIELD AMPLITUDE AND PHASE MODULATION
    ALEKSEEV, AV
    SUSHILOV, NV
    PHYSICAL REVIEW A, 1992, 46 (01): : 351 - 355