Recurrent boosting for classification of natural and synthetic time-series data

被引:0
|
作者
Vincent, Robert D. [1 ,2 ]
Pineau, Joelle [1 ]
de Guzman, Philip [2 ]
Avoli, Massimo [2 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] McGill Univ, Montreal Neurol Inst, Montreal, PQ, Canada
来源
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Boosted ensemble classifiers have a demonstrated ability to discover regularities in large, poorly modeled datasets. In this paper we present an application of multi-hypothesis AdaBoost to detect epileptiform activity from electrophysiological recordings. While existing boosting methods do not account automatically for the sequence information that is available when analyzing time-series data, we present a recurrent extension to AdaBoost, and show that it improves classification accuracy in our application domain.
引用
收藏
页码:192 / +
页数:3
相关论文
共 50 条
  • [1] CLASSIFICATION OF MULTIPLE TIME-SERIES VIA BOOSTING
    Harrington, Patrick L., Jr.
    Rao, Arvind
    Hero, Alfred O., III
    [J]. 2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS, 2009, : 410 - +
  • [2] A Photonic Recurrent Neuron for Time-Series Classification
    Mourgias-Alexandris, George
    Passalis, Nikolaos
    Dabos, George
    Totovic, Angelina
    Tefas, Anastasios
    Pleros, Nikos
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (05) : 1340 - 1347
  • [3] NONLINEAR FORECASTING FOR THE CLASSIFICATION OF NATURAL TIME-SERIES
    SUGIHARA, G
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 348 (1688): : 477 - 495
  • [4] Implementation Of Recurrent Neural Network And Boosting Method For Time-Series Forecasting
    Soelaiman, Rully
    Martoyo, Arief
    Purwananto, Yudhi
    Purnomo, Mauridhi H.
    [J]. ICICI-BME: 2009 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, COMMUNICATION, INFORMATION TECHNOLOGY, AND BIOMEDICAL ENGINEERING, 2009, : 55 - +
  • [5] Classification of Time-Series Data using ptSTL
    Ergurtuna, Mert
    Gol, Ebru Aydin
    [J]. 2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [6] Time-series classification with an all-optical recurrent neuron
    Mourgias-Alexandris, G.
    Passalis, N.
    Dabos, G.
    Totovic, A.
    Tefas, A.
    Pleros, N.
    [J]. 2020 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATIONS (ECOC), 2020,
  • [7] Metrics for Evaluating Synthetic Time-Series Data of Battery
    Seol, Sujin
    Yoon, Jaewoo
    Lee, Jungeun
    Kim, Byeongwoo
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [8] A new boosting algorithm for improved time-series forecasting with recurrent neural networks
    Assaad, Mohammad
    Bone, Romuald
    Cardot, Hubert
    [J]. INFORMATION FUSION, 2008, 9 (01) : 41 - 55
  • [9] ENVIRONMETRIC TIME-SERIES ANALYSIS - MODELING NATURAL SYSTEMS FROM EXPERIMENTAL TIME-SERIES DATA
    YOUNG, PC
    MINCHIN, PEH
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1991, 13 (03) : 190 - 201
  • [10] An Algorithm for Classification and Outlier Detection of Time-Series Data
    Weekley, R. Andrew
    Goodrich, Robert K.
    Cornman, Larry B.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (01) : 94 - 107