Classification of Time-Series Data using ptSTL

被引:0
|
作者
Ergurtuna, Mert [1 ]
Gol, Ebru Aydin [1 ]
机构
[1] ODTU, Bilgisayar Muhendisligi, Ankara, Turkey
关键词
Formula Synthesis; STL; Formal Methods; Monotonicity;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, the goal is to find properties to classify time series data. These properties are expressed using past time Signal Temporal Logic (ptSTL). First, we extend monotonicity properties for signals with timed labels to signals with a single label with the purpose of optimizing parameters of template ptSTL formulas efficiently. This method optimizes a monotone criteria while keeping the complementary criteria (i.e. error) under a given bound. Then by iteratively combining optimized formulas, a classifier is generated for the time series data. Lastly, proposed method is illustrated on a case study.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Classification of time-series data using a generative/discriminative hybrid
    Abou-Moustafa, KT
    Cheriet, M
    Suen, CY
    [J]. NINTH INTERNATIONAL WORKSHOP ON FRONTIERS IN HANDWRITING RECOGNITION, PROCEEDINGS, 2004, : 51 - 56
  • [2] Classification of Time-Series Data Using Boosted Decision Trees
    Aasi, Erfan
    Vasile, Cristian Ioan
    Bahreinian, Mahroo
    Belta, Calin
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 1263 - 1268
  • [3] Interpretable Classification of Time-Series Data using Efficient Enumerative Techniques
    Mohammadinejad, Sara
    Deshmukh, Jyotirmoy, V
    Puranic, Aniruddh G.
    Vazquez-Chanlatte, Marcell
    Donze, Alexandre
    [J]. PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (HSCC2020) (PART OF CPS-IOT WEEK), 2020,
  • [4] An Algorithm for Classification and Outlier Detection of Time-Series Data
    Weekley, R. Andrew
    Goodrich, Robert K.
    Cornman, Larry B.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (01) : 94 - 107
  • [5] Data Augmentation with Suboptimal Warping for Time-Series Classification
    Kamycki, Krzysztof
    Kapuscinski, Tomasz
    Oszust, Mariusz
    [J]. SENSORS, 2020, 20 (01)
  • [6] Time-Series Classification Using Fuzzy Cognitive Maps
    Homenda, Wladyslaw
    Jastrzebska, Agnieszka
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (07) : 1383 - 1394
  • [7] Evaluating Impact Using Time-Series Data
    Wauchope, Hannah S.
    Amano, Tatsuya
    Geldmann, Jonas
    Johnston, Alison
    Simmons, Benno, I
    Sutherland, William J.
    Jones, Julia P. G.
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2021, 36 (03) : 196 - 205
  • [8] Emotional Expression Classification using Time-Series Kernels
    Lorincz, Andras
    Jeni, Laszlo A.
    Szabo, Zoltan
    Cohn, Jeffrey F.
    Kanade, Takeo
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2013, : 889 - 895
  • [9] UNSUPERVISED TIME-SERIES CLASSIFICATION
    RAJAN, JJ
    RAYNER, PJW
    [J]. SIGNAL PROCESSING, 1995, 46 (01) : 57 - 74
  • [10] Analysis and Practicality of Traffic Flow Classification Method using Binned Time-Series Data
    Nawata, Shuichi
    Koto, Hideyuki
    Kitahara, Takeshi
    Ano, Shigehiro
    [J]. 2015 10th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT), 2015,