Emotional Expression Classification using Time-Series Kernels

被引:25
|
作者
Lorincz, Andras [1 ]
Jeni, Laszlo A. [2 ]
Szabo, Zoltan [1 ]
Cohn, Jeffrey F. [2 ,3 ]
Kanade, Takeo [2 ]
机构
[1] Eotvos Lorand Univ, Budapest, Hungary
[2] Carnegie Mellon Univ, Pittsburgh, PA 15106 USA
[3] Univ Pittsburgh, Pittsburgh, PA 15106 USA
关键词
MODELS;
D O I
10.1109/CVPRW.2013.131
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimation of facial expressions, as spatio-temporal processes, can take advantage of kernel methods if one considers facial landmark positions and their motion in 3D space. We applied support vector classification with kernels derived from dynamic time-warping similarity measures. We achieved over 99% accuracy - measured by area under ROC curve - using only the 'motion pattern' of the PCA compressed representation of the marker point vector, the so-called shape parameters. Beyond the classification of full motion patterns, several expressions were recognized with over 90% accuracy in as few as 5-6 frames from their onset, about 200 milliseconds.
引用
收藏
页码:889 / 895
页数:7
相关论文
共 50 条
  • [1] Kernels for large margin time-series classification
    Sivaramakrishnan, K. R.
    Karthik, K.
    Bhattacharyya, C.
    [J]. 2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 2745 - 2750
  • [2] Classification of Time-Series Data using ptSTL
    Ergurtuna, Mert
    Gol, Ebru Aydin
    [J]. 2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [3] Time-Series Classification Using Fuzzy Cognitive Maps
    Homenda, Wladyslaw
    Jastrzebska, Agnieszka
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (07) : 1383 - 1394
  • [4] UNSUPERVISED TIME-SERIES CLASSIFICATION
    RAJAN, JJ
    RAYNER, PJW
    [J]. SIGNAL PROCESSING, 1995, 46 (01) : 57 - 74
  • [5] Time-series Classification Using Neural Bag-of-Features
    Passalis, Nikolaos
    Tsantekidis, Avraam
    Tefas, Anastasios
    Kanniainen, Juho
    Gabbouj, Moncef
    Iosifidis, Alexandros
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 301 - 305
  • [6] Time-series Temporal Classification using Feature Ensemble Learning
    Liu, Ruoqian
    Murphey, Yi L.
    [J]. 2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [7] Classification of Interbeat Interval Time-Series Using Attention Entropy
    Yang, Jiawei
    Choudhary, Gulraiz I.
    Rahardja, Susanto
    Franti, Pasi
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (01) : 321 - 330
  • [8] Classification of time-series data using a generative/discriminative hybrid
    Abou-Moustafa, KT
    Cheriet, M
    Suen, CY
    [J]. NINTH INTERNATIONAL WORKSHOP ON FRONTIERS IN HANDWRITING RECOGNITION, PROCEEDINGS, 2004, : 51 - 56
  • [9] Classification of Time-Series Data Using Boosted Decision Trees
    Aasi, Erfan
    Vasile, Cristian Ioan
    Bahreinian, Mahroo
    Belta, Calin
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 1263 - 1268
  • [10] Is Empathy Related to the Perception of Emotional Expression in Music? A Multimodal Time-Series Analysis
    Woellner, Clemens
    [J]. PSYCHOLOGY OF AESTHETICS CREATIVITY AND THE ARTS, 2012, 6 (03) : 214 - 223