Recurrent boosting for classification of natural and synthetic time-series data

被引:0
|
作者
Vincent, Robert D. [1 ,2 ]
Pineau, Joelle [1 ]
de Guzman, Philip [2 ]
Avoli, Massimo [2 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] McGill Univ, Montreal Neurol Inst, Montreal, PQ, Canada
来源
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Boosted ensemble classifiers have a demonstrated ability to discover regularities in large, poorly modeled datasets. In this paper we present an application of multi-hypothesis AdaBoost to detect epileptiform activity from electrophysiological recordings. While existing boosting methods do not account automatically for the sequence information that is available when analyzing time-series data, we present a recurrent extension to AdaBoost, and show that it improves classification accuracy in our application domain.
引用
收藏
页码:192 / +
页数:3
相关论文
共 50 条
  • [21] Interpretable Classification of Time-Series Data using Efficient Enumerative Techniques
    Mohammadinejad, Sara
    Deshmukh, Jyotirmoy, V
    Puranic, Aniruddh G.
    Vazquez-Chanlatte, Marcell
    Donze, Alexandre
    [J]. PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (HSCC2020) (PART OF CPS-IOT WEEK), 2020,
  • [22] Time-Series Data Mining
    Esling, Philippe
    Agon, Carlos
    [J]. ACM COMPUTING SURVEYS, 2012, 45 (01)
  • [23] Probabilistic, Recurrent, Fuzzy Neural Network for Processing Noisy Time-Series Data
    Li, Yong
    Gault, Richard
    McGinnity, T. Martin
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) : 4851 - 4860
  • [24] Time-series forecasting through recurrent topology
    Taylor Chomiak
    Bin Hu
    [J]. Communications Engineering, 3 (1):
  • [25] MEASURING SPATIAL SPREADING IN RECURRENT TIME-SERIES
    WAYLAND, R
    BROMLEY, D
    PICKETT, D
    PASSAMANTE, A
    [J]. PHYSICA D, 1994, 79 (2-4): : 320 - 334
  • [26] Optimization of data pre-processing methods for time-series classification of electroencephalography data
    Anders, Christoph
    Curio, Gabriel
    Arnrich, Bert
    Waterstraat, Gunnar
    [J]. NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2023, 34 (04) : 374 - 391
  • [27] Data-space inversion using a recurrent autoencoder for time-series parameterization
    Jiang, Su
    Durlofsky, Louis J.
    [J]. COMPUTATIONAL GEOSCIENCES, 2021, 25 (01) : 411 - 432
  • [28] Data-space inversion using a recurrent autoencoder for time-series parameterization
    Su Jiang
    Louis J. Durlofsky
    [J]. Computational Geosciences, 2021, 25 : 411 - 432
  • [29] Comparing Recurrent Networks for Time-Series Forecasting
    Ferreira, Aida A.
    Ludermir, Teresa B.
    de Aquino, Ronaldo R. B.
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [30] Synthetic Time-Series Load Data via Conditional Generative Adversarial Networks
    Pinceti, Andrea
    Sankar, Lalitha
    Kosut, Oliver
    [J]. 2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,