Recurrent boosting for classification of natural and synthetic time-series data

被引:0
|
作者
Vincent, Robert D. [1 ,2 ]
Pineau, Joelle [1 ]
de Guzman, Philip [2 ]
Avoli, Massimo [2 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] McGill Univ, Montreal Neurol Inst, Montreal, PQ, Canada
来源
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Boosted ensemble classifiers have a demonstrated ability to discover regularities in large, poorly modeled datasets. In this paper we present an application of multi-hypothesis AdaBoost to detect epileptiform activity from electrophysiological recordings. While existing boosting methods do not account automatically for the sequence information that is available when analyzing time-series data, we present a recurrent extension to AdaBoost, and show that it improves classification accuracy in our application domain.
引用
收藏
页码:192 / +
页数:3
相关论文
共 50 条
  • [41] Optical time-series signals classification based on data augmentation for small sample
    Zhang, Xuezhi
    Sun, Haonan
    Jiang, Junfeng
    Liu, Kun
    Li, Zeyu
    Jin, Jiahang
    Bo, Wenxin
    Yu, Yin
    Liu, Tiegen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (12)
  • [42] An Evaluation of Classification Methods for 3D Printing Time-Series Data
    Mahato, Vivek
    Obeidi, Muhannad Ahmed
    Brabazon, Dermot
    Cunningham, Padraig
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 8211 - 8216
  • [43] Optical time-series signals classification based on data augmentation for small sample
    Xuezhi Zhang
    Haonan Sun
    Junfeng Jiang
    Kun Liu
    Zeyu Li
    Jiahang Jin
    Wenxin Bo
    Yin Yu
    Tiegen Liu
    [J]. Science China Information Sciences, 2022, 65
  • [44] Transfer Learning for Time Series Classification Using Synthetic Data Generation
    Rotem, Yarden
    Shimoni, Nathaniel
    Rokach, Lior
    Shapira, Bracha
    [J]. CYBER SECURITY, CRYPTOLOGY, AND MACHINE LEARNING, 2022, 13301 : 232 - 246
  • [45] Optical time-series signals classification based on data augmentation for small sample
    Xuezhi ZHANG
    Haonan SUN
    Junfeng JIANG
    Kun LIU
    Zeyu LI
    Jiahang JIN
    Wenxin BO
    Yin YU
    Tiegen LIU
    [J]. Science China(Information Sciences), 2022, 65 (12) : 321 - 322
  • [46] UNSUPERVISED SEQUENTIAL CLASSIFICATION OF MODIS TIME-SERIES
    Grobler, T. L.
    Kleynhans, W.
    Salmon, B. P.
    Burger, C. N.
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2244 - 2247
  • [47] Imaging Time-Series to Improve Classification and Imputation
    Wang, Zhiguang
    Oates, Tim
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3939 - 3945
  • [48] Kernels for large margin time-series classification
    Sivaramakrishnan, K. R.
    Karthik, K.
    Bhattacharyya, C.
    [J]. 2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 2745 - 2750
  • [49] TREMOR CLASSIFICATION AND TREMOR TIME-SERIES ANALYSIS
    DEUSCHL, G
    LAUK, M
    TIMMER, J
    [J]. CHAOS, 1995, 5 (01) : 48 - 51
  • [50] Time-series prediction based on pattern classification
    Zeng, Z
    Yan, H
    Fu, AMN
    [J]. ARTIFICIAL INTELLIGENCE IN ENGINEERING, 2001, 15 (01): : 61 - 69