Homogenization of von Karman plates excited by piezoelectric patches

被引:0
|
作者
Hoffman, KH [1 ]
Botkin, ND [1 ]
机构
[1] Stiftung Caesar, D-53111 Bonn, Germany
来源
关键词
nonlinear von Karman thin plates; piezoelectric actuators; homogenization; two-scale convergence;
D O I
10.1002/1521-4001(200009)80:9<579::AID-ZAMM579>3.0.CO;2-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model describing vibration of nonlinear von Karman thin plates excited by actuators made of piezoelectric ceramics is considered. The model contains strong oscillating coefficients due to the piezoelectric actuators. A procedure of homogenization based on the so-called two-scale convergence is applied to the model. This yields a nonlinear system of equations with constant coefficients. The unique solvability of the resulting system is proved. The convergence of all solutions of the original system to the solution of the resulting system as the number of piezoelectric actuators goes to infinity is proved.
引用
收藏
页码:579 / 590
页数:12
相关论文
共 50 条
  • [1] Oscillations of nonlinear thin plates excited by piezoelectric patches
    Hoffmann, KH
    Botkin, ND
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1998, 78 (07): : 495 - 503
  • [2] BEM formulation for von Karman plates
    Waidemam, Leandro
    Venturini, Wilson S.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (10) : 1223 - 1230
  • [3] NUMERICAL APPROXIMATION OF VON KARMAN VISCOELASTIC PLATES
    Friedrich, Manuel
    Kruzik, Martin
    Valdman, Jan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (01): : 299 - 319
  • [4] Analysis of von Karman plates using a BEM formulation
    Waidemam, L.
    Venturini, W. S.
    [J]. BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXIX, 2007, 44 : 213 - +
  • [5] Boundary control and stabilization of Kirchhoff and von Karman plates
    Horn, MA
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 437 - 440
  • [6] VARIATIONAL PROBLEMS FOR FOPPL-VON KARMAN PLATES
    Maddalena, Francesco
    Percivale, Danilo
    Tomarelli, Franco
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 251 - 282
  • [7] Linking the von Karman Equations to the Practical Design of Plates
    Becque, Jurgen
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2021, 147 (11)
  • [8] Linearized von Karman theory for incompressible magnetoelastic plates
    Bresciani, Marco
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (10): : 1987 - 2037
  • [9] A unilateral contact model with buckling in von Karman plates
    Muradova, Aliki D.
    Stavroulakis, Georgios E.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (04) : 1261 - 1271
  • [10] Homogenization of an elastic material reinforced with thin rigid von Karman ribbons
    El Jarroudi, Mustapha
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (07) : 1965 - 1991