Linearized von Karman theory for incompressible magnetoelastic plates

被引:5
|
作者
Bresciani, Marco [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
来源
基金
奥地利科学基金会;
关键词
Magnetoelasticity; mixed Eulerian-Lagrangian variational problems; thin plates; Gamma-convergence; NONLINEAR ELASTICITY; ENERGY MINIMIZERS; GAMMA-CONVERGENCE; EXISTENCE; HOMOGENIZATION; INVERTIBILITY; INJECTIVITY; RIGIDITY;
D O I
10.1142/S0218202521500445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior, in the sense of Gamma-convergence, of a thin incompressible magnetoelastic plate, as its thickness goes to zero. We focus on the linearized von Karman regime. The model features a mixed Eulerian-Lagrangian formulation, as magnetizations are defined on the deformed configuration.
引用
收藏
页码:1987 / 2037
页数:51
相关论文
共 50 条
  • [1] The von Karman theory for incompressible elastic shells
    Li, Hui
    Chermisi, Milena
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 48 (1-2) : 185 - 209
  • [2] CONVERGENCE OF EQUILIBRIA FOR INCOMPRESSIBLE ELASTIC PLATES IN THE VON KARMAN REGIME
    Lewicka, Marta
    Li, Hui
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (01) : 143 - 166
  • [3] Nonlinear Model Reduction of von Karman Plates Under Linearized Compressible Fluid Flow
    Brake, M. R.
    Barone, M. F.
    Segalman, D. J.
    [J]. AIAA JOURNAL, 2012, 50 (05) : 1047 - 1059
  • [4] BEM formulation for von Karman plates
    Waidemam, Leandro
    Venturini, Wilson S.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (10) : 1223 - 1230
  • [5] Rigorous bounds for the Foppl-von Karman theory of isotropically compressed plates
    Ben Belgacem, H
    Conti, S
    DeSimone, A
    Müller, S
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (06) : 661 - 683
  • [6] On the hemivariational inequality approach to conconvex constrained problems in the theory of von Karman plates
    Goeleven, D.
    [J]. Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM/Applied Mathematics and Mechanics, 1995, 75 (11):
  • [7] ON THE HEMIVARIATIONAL INEQUALITY APPROACH TO NONCONVEX CONSTRAINED PROBLEMS IN THE THEORY OF VON KARMAN PLATES
    GOELEVEN, D
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (11): : 861 - 866
  • [8] NUMERICAL APPROXIMATION OF VON KARMAN VISCOELASTIC PLATES
    Friedrich, Manuel
    Kruzik, Martin
    Valdman, Jan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (01): : 299 - 319
  • [9] Refined theory of magnetoelastic plates
    School of Mechanical Engineering and Automation, Anshan University of Science and Technology, Anshan 114044, China
    不详
    [J]. Gongcheng Lixue, 2006, 3 (82-87+110):
  • [10] Analysis of von Karman plates using a BEM formulation
    Waidemam, L.
    Venturini, W. S.
    [J]. BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXIX, 2007, 44 : 213 - +