Homogenization of von Karman plates excited by piezoelectric patches

被引:0
|
作者
Hoffman, KH [1 ]
Botkin, ND [1 ]
机构
[1] Stiftung Caesar, D-53111 Bonn, Germany
来源
关键词
nonlinear von Karman thin plates; piezoelectric actuators; homogenization; two-scale convergence;
D O I
10.1002/1521-4001(200009)80:9<579::AID-ZAMM579>3.0.CO;2-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model describing vibration of nonlinear von Karman thin plates excited by actuators made of piezoelectric ceramics is considered. The model contains strong oscillating coefficients due to the piezoelectric actuators. A procedure of homogenization based on the so-called two-scale convergence is applied to the model. This yields a nonlinear system of equations with constant coefficients. The unique solvability of the resulting system is proved. The convergence of all solutions of the original system to the solution of the resulting system as the number of piezoelectric actuators goes to infinity is proved.
引用
收藏
页码:579 / 590
页数:12
相关论文
共 50 条
  • [21] Attractors and Long Time Behavior of von Karman Thermoelastic Plates
    Igor Chueshov
    Irena Lasiecka
    [J]. Applied Mathematics and Optimization, 2008, 58 : 195 - 241
  • [22] VON KARMAN THERMOELASTIC PLATES: EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTIONS
    Liu, Miaomiao
    Guo, Bin
    Wang, Jian
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, : 944 - 968
  • [23] The Foppl-von Karman equations for plates with incompatible strains
    Lewicka, Marta
    Mahadevan, L.
    Pakzad, Mohammad Reza
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2126): : 402 - 426
  • [24] ELIMINATING FLUTTER FOR CLAMPED VON KARMAN PLATES IMMERSED IN SUBSONIC FLOWS
    Lasiecka, Irena
    Webster, Justin
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (05) : 1935 - 1969
  • [25] Uniform boundary stabilization of the dynamical von Karman and Timoshenko equations for plates
    Menzala, GP
    Pazoto, AF
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 385 - 413
  • [26] Decay rates of solutions to a von Karman system for viscoelastic plates with memory
    Rivera, JEM
    Menzala, GP
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 1999, 57 (01) : 181 - 200
  • [27] The Foppl-von Karman equations of elastic plates with initial stress
    Ciarletta, P.
    Pozzi, G.
    Riccobelli, D.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (05):
  • [28] On hyperbolic integro-differential von Karman equations for viscoelastic plates
    Bock, I
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL 1, 1999, 129 : 87 - 96
  • [29] Homotopy perturbation study of nonlinear vibration of Von Karman rectangular plates
    Rashidi, M. M.
    Shooshtari, A.
    Beg, O. Anwar
    [J]. COMPUTERS & STRUCTURES, 2012, 106 : 46 - 55
  • [30] Asymptotic modeling of a Coulomb frictional Signorini problem for the von Karman plates
    Chacha, Djamal Ahmed
    Bensayah, Abdallah
    [J]. COMPTES RENDUS MECANIQUE, 2008, 336 (11-12): : 846 - 850