A remark on the probabilistic solution of the Dirichlet problem for simply connected domains in the plane

被引:4
|
作者
Markowsky, Greg [1 ]
机构
[1] Monash Univ, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
Dirichlet problem; Planar Brownian motion; Analytic functions;
D O I
10.1016/j.jmaa.2018.04.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new proof is given of a simple probabilistic lemma which implies the solution of the Dirichlet problem for simply connected domains in the plane. This proof uses the conformal invariance of planar Brownian motion in place of the previously existing measure-theoretic arguments. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1143 / 1146
页数:4
相关论文
共 50 条
  • [31] ASYMPTOTICS OF THE SOLUTION OF THE DIRICHLET PROBLEM IN DOMAINS WITH A THIN CROSSPIECE
    MAZYA, VG
    NAZAROV, SA
    PLAMENEVSKII, BA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1982, 16 (02) : 108 - 114
  • [33] Solution of a Nonlinear Thermal Problem in Connected Domains
    Taghite, M. B.
    Kouitat, R.
    Bendib, S.
    Dubois, G.
    Bonzi, B. K.
    JOURNAL OF MULTISCALE MODELLING, 2015, 6 (04)
  • [34] ON CAUCHY PROBLEM SOLUTION FOR A HARMONIC FUNCTION IN A SIMPLY CONNECTED DOMAIN
    Shirokova, E. A.
    Ivanshin, P. N.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2023, 12 (02): : 87 - 96
  • [35] REGULARITY OF DERIVATIONS OF SOLUTION TO DIRICHLET PROBLEM IN PLANE SECTOR
    MERIGOT, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 273 (07): : 356 - &
  • [36] Integrable Structure of the Dirichlet Boundary Problem in Multiply-Connected Domains
    I. Krichever
    A. Marshakov
    A Zabrodin
    Communications in Mathematical Physics, 2005, 259 : 1 - 44
  • [37] Integrable structure of the dirichlet boundary problem in multiply-connected domains
    Krichever, I
    Marshakov, A
    Zabrodin, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (01) : 1 - 44
  • [38] Extremal first Dirichlet eigenvalue of doubly connected plane domains and dihedral symmetry
    El Soufi, Ahmad
    Kiwan, Rola
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) : 1112 - 1119
  • [39] Classifying simply connected wandering domains
    Anna Miriam Benini
    Vasiliki Evdoridou
    Núria Fagella
    Philip J. Rippon
    Gwyneth M. Stallard
    Mathematische Annalen, 2022, 383 : 1127 - 1178
  • [40] Conformal Invariants in Simply Connected Domains
    Nasser, Mohamed M. S.
    Vuorinen, Matti
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (3-4) : 747 - 775