A remark on the probabilistic solution of the Dirichlet problem for simply connected domains in the plane

被引:4
|
作者
Markowsky, Greg [1 ]
机构
[1] Monash Univ, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
Dirichlet problem; Planar Brownian motion; Analytic functions;
D O I
10.1016/j.jmaa.2018.04.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new proof is given of a simple probabilistic lemma which implies the solution of the Dirichlet problem for simply connected domains in the plane. This proof uses the conformal invariance of planar Brownian motion in place of the previously existing measure-theoretic arguments. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1143 / 1146
页数:4
相关论文
共 50 条
  • [21] PLANE DIRICHLET PROBLEM FOR CERTAIN MULTIPLY CONNECTED REGIONS
    SLOSS, JM
    JOURNAL D ANALYSE MATHEMATIQUE, 1975, 28 : 86 - 100
  • [22] SOLUTION OF DIRICHLET PROBLEM IN PARALLEL SLIT DOMAINS
    ZUCKERBE.HL
    JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (01): : 77 - &
  • [23] A scheme for the numerical solution of the modified dirichlet problem in finite multiply connected domains and some applications
    D. G. Sanikidze
    M. G. Mirianashvili
    K. R. Kupatadze
    Differential Equations, 2006, 42 : 1343 - 1351
  • [24] A scheme for the numerical solution of the modified Dirichlet problem in finite multiply connected domains and some applications
    Sanikidze, D. G.
    Mirianashvili, M. G.
    Kupatadze, K. R.
    DIFFERENTIAL EQUATIONS, 2006, 42 (09) : 1343 - 1351
  • [25] Some remarks on the Dirichlet problem in plane exterior domains
    Coscia V.
    Russo R.
    Ricerche di Matematica, 2007, 56 (1) : 31 - 41
  • [26] The Dirichlet Problem for elliptic equations in unbounded domains of the plane
    Cavaliere, Paola
    Transirico, Maria
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2008, 6 (01): : 47 - 58
  • [27] RETRACTED: A remark on the Dirichlet problem in a half-plane (Retracted Article)
    Zhao, Tao
    Yamada, Alexander Jr.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [28] MAPPINGS OF DOMAINS CONNECTED WITH THE DIRICHLET PROBLEM FOR THE EQUATION OF VIBRATING STRING
    LYASHENKO, AA
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1994, 34 (02): : 329 - 352
  • [29] A remark concerning the Dirichlet problem
    Scherman, DJ
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1940, 29 : 286 - 287
  • [30] CONSTRUCTING DIFFEOMORPHISMS BETWEEN SIMPLY CONNECTED PLANE DOMAINS-PART 2
    Atkinson, Kendall
    Chien, David
    Hansen, Olaf
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2024, 60 : 351 - 363