Nucleation conditions for catalyst-free GaN nanowires

被引:88
|
作者
Bertness, K. A. [1 ]
Roshko, A. [1 ]
Mansfield, L. M. [1 ]
Harvey, T. E. [1 ]
Sanford, N. A. [1 ]
机构
[1] Univ Colorado, Natl Inst Stand & Technol, Div Optoelect, Boulder, CO 80302 USA
关键词
nanostructures; molecular beam epitaxy; nitrides; semiconducting III-V materials;
D O I
10.1016/j.jcrysgro.2006.10.209
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We have examined the initial steps for catalyst-free growth of GaN nanowires by molecular beam epitaxy (MBE) on Si (1 1 1) substrates using AlN buffer layers. These wires form spontaneously under high N-to-Ga ratios for a growth temperature range of about 810-830 degrees C. Field emission scanning electron microscopy (FESEM) shows that part of the GaN forms a "matrix layer" that also grows with the [0 0 0 1] direction perpendicular to the substrate surface. This layer contains small, dense hexagonal pits in which the nanowires nucleate. Using both FESEM and atomic force microscopy (AFM), we identify the pit facets as {1 0 1 2} planes. The nucleation studies show that the use of an AlN buffer layer is essential to the regular formation of the nanowires and matrix layers under our growth conditions. Our typical AlN buffer layer is 40-50 nm thick. We conclude that the nucleation mechanism for nanowires includes formation of nanocolumns in the AlN buffer layer. The propagation of the nanowires in GaN growth appears to be driven by differences in growth rates among crystallographic planes under N-rich conditions. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [41] Catalyst-free synthesis of silicon nanowires by oxidation and reduction process
    Sanjay K. Behura
    Qiaoqin Yang
    Akira Hirose
    Omkar Jani
    Indrajit Mukhopadhyay
    Journal of Materials Science, 2014, 49 : 3592 - 3597
  • [42] Effect of substrate orientation on the catalyst-free growth of InP nanowires
    Mattila, M.
    Hakkarainen, T.
    Jiang, H.
    Kauppinen, E. I.
    Lipsanen, H.
    NANOTECHNOLOGY, 2007, 18 (15)
  • [43] Catalyst-free growth and crystal structures of CdO nanowires and nanotubes
    Fan, D. H.
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (08) : 2300 - 2304
  • [44] Catalyst-Free Synthesis and Characterization of Metastable Boron Carbide Nanowires
    Velamakanni, Aruna
    Ganesh, K. J.
    Zhu, Yanwu
    Ferreira, Paulo J.
    Ruoff, Rodney S.
    ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (24) : 3926 - 3933
  • [45] Simple and catalyst-free synthesis of silicon oxide nanowires and nanocoils
    Chen, Xinqi
    Ruoff, Rodney S.
    NANO, 2007, 2 (02) : 91 - 95
  • [46] Catalyst-free growth of semiconductor nanowires by selective area MOVPE
    Motohisa, J
    Noborisaka, F
    Hara, S
    Inari, M
    Fukui, T
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2005, 772 : 877 - 878
  • [47] Long catalyst-free InAs nanowires grown on silicon by HVPE
    Gregoire, Gabin
    Gil, Evelyne
    Zeghouane, Mohammed
    Bougerol, Catherine
    Hijazi, Hadi
    Castelluci, Dominique
    Dubrovskii, Vladimir G.
    Trassoudaine, Agnes
    Goktas, Nebile Isik
    LaPierre, Ray R.
    Andre, Yamina
    CRYSTENGCOMM, 2021, 23 (02) : 378 - 384
  • [48] Catalyst-Free GaN Nanorods Synthesized by Selective Area Growth
    Lin, Yen-Ting
    Yeh, Ting-Wei
    Nakajima, Yoshitake
    Dapkus, P. Daniel
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (21) : 3162 - 3171
  • [49] Catalyst-free growth of high-optical quality GaN nanowires by metal-organic vapor phase epitaxy
    Chen, X. J.
    Gayral, B.
    Sam-Giao, D.
    Bougerol, C.
    Durand, C.
    Eymery, J.
    APPLIED PHYSICS LETTERS, 2011, 99 (25)
  • [50] Doping incorporation paths in catalyst-free Be-doped GaAs nanowires
    Casadei, Alberto
    Krogstrup, Peter
    Heiss, Martin
    Rohr, Jason A.
    Colombo, Carlo
    Ruelle, Thibaud
    Upadhyay, Shivendra
    Sorensen, Claus B.
    Nygard, Jesper
    Fontcuberta i Morral, Anna
    APPLIED PHYSICS LETTERS, 2013, 102 (01)