Nucleation conditions for catalyst-free GaN nanowires

被引:88
|
作者
Bertness, K. A. [1 ]
Roshko, A. [1 ]
Mansfield, L. M. [1 ]
Harvey, T. E. [1 ]
Sanford, N. A. [1 ]
机构
[1] Univ Colorado, Natl Inst Stand & Technol, Div Optoelect, Boulder, CO 80302 USA
关键词
nanostructures; molecular beam epitaxy; nitrides; semiconducting III-V materials;
D O I
10.1016/j.jcrysgro.2006.10.209
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We have examined the initial steps for catalyst-free growth of GaN nanowires by molecular beam epitaxy (MBE) on Si (1 1 1) substrates using AlN buffer layers. These wires form spontaneously under high N-to-Ga ratios for a growth temperature range of about 810-830 degrees C. Field emission scanning electron microscopy (FESEM) shows that part of the GaN forms a "matrix layer" that also grows with the [0 0 0 1] direction perpendicular to the substrate surface. This layer contains small, dense hexagonal pits in which the nanowires nucleate. Using both FESEM and atomic force microscopy (AFM), we identify the pit facets as {1 0 1 2} planes. The nucleation studies show that the use of an AlN buffer layer is essential to the regular formation of the nanowires and matrix layers under our growth conditions. Our typical AlN buffer layer is 40-50 nm thick. We conclude that the nucleation mechanism for nanowires includes formation of nanocolumns in the AlN buffer layer. The propagation of the nanowires in GaN growth appears to be driven by differences in growth rates among crystallographic planes under N-rich conditions. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [21] Catalyst-free synthesis and mechanical characterization of TaC nanowires
    Wang, Shiliang
    Ma, Liang
    Mead, James Lee
    Ju, Shin-Pon
    Li, Guodong
    Huang, Han
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2021, 64 (05)
  • [22] Catalyst-free synthesis and shape control of CdTe nanowires
    Xiaoping Jin
    Marta Kruszynska
    Jürgen Parisi
    Joanna Kolny-Olesiak
    Nano Research, 2011, 4 : 824 - 835
  • [23] Catalyst-free synthesis and shape control of CdTe nanowires
    Jin, Xiaoping
    Kruszynska, Marta
    Parisi, Juergen
    Kolny-Olesiak, Joanna
    NANO RESEARCH, 2011, 4 (09) : 824 - 835
  • [24] Modeling of Catalyst-free Growth Process of ZnO Nanowires
    Kong, Xiangcheng
    Wei, Chuang
    Zhu, Yong
    Cohen, Paul
    Dong, Jingyan
    46TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE, NAMRC 46, 2018, 26 : 349 - 358
  • [25] Catalyst-free synthesis and mechanical characterization of TaC nanowires
    Shiliang Wang
    Liang Ma
    James Lee Mead
    Shin-Pon Ju
    Guodong Li
    Han Huang
    Science China(Physics,Mechanics & Astronomy), 2021, Mechanics & Astronomy)2021 (05) : 47 - 57
  • [26] Photoconductivity of Catalyst-Free Grown Aluminum Nitride Nanowires
    Teker, Kasif
    Otto, Jesse
    Siemann, Andrew
    NANOTECHNOLOGY VI, 2013, 8766
  • [27] Residual strain in ZnO nanowires grown by catalyst-free chemical vapor deposition on GaN/sapphire (0001)
    Tsao, F. C.
    Chen, J. Y.
    Kuo, C. H.
    Chi, G. C.
    Pan, C. J.
    Huang, P. J.
    Tun, C. J.
    Pong, B. J.
    Hsueh, T. H.
    Chang, C. Y.
    Pearton, S. J.
    Ren, F.
    APPLIED PHYSICS LETTERS, 2008, 92 (20)
  • [28] Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer
    Schumann, T.
    Gotschke, T.
    Limbach, F.
    Stoica, T.
    Calarco, R.
    NANOTECHNOLOGY, 2011, 22 (09)
  • [29] Growth of oriented GaN nanowires by controlling nucleation conditions
    Zong, Yang
    Huang, Hui
    Song, Wenbin
    Lv, Rui
    Zhao, Danna
    Liu, Zhe
    Guang, Qiyilan
    Guo, Jingwei
    Tang, Zhenan
    CRYSTAL RESEARCH AND TECHNOLOGY, 2016, 51 (12) : 757 - 761
  • [30] Catalyst-free GaN Nanowire Growth and Optoelectronic Characterization
    Bertness, Kris A.
    Sanford, Norman A.
    Schlager, John B.
    NANOEPITAXY: HOMO- AND HETEROGENEOUS SYNTHESIS, CHARACTERIZATION, AND DEVICE INTEGRATION OF NANOMATERIALS II, 2010, 7768