Nucleation conditions for catalyst-free GaN nanowires

被引:88
|
作者
Bertness, K. A. [1 ]
Roshko, A. [1 ]
Mansfield, L. M. [1 ]
Harvey, T. E. [1 ]
Sanford, N. A. [1 ]
机构
[1] Univ Colorado, Natl Inst Stand & Technol, Div Optoelect, Boulder, CO 80302 USA
关键词
nanostructures; molecular beam epitaxy; nitrides; semiconducting III-V materials;
D O I
10.1016/j.jcrysgro.2006.10.209
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We have examined the initial steps for catalyst-free growth of GaN nanowires by molecular beam epitaxy (MBE) on Si (1 1 1) substrates using AlN buffer layers. These wires form spontaneously under high N-to-Ga ratios for a growth temperature range of about 810-830 degrees C. Field emission scanning electron microscopy (FESEM) shows that part of the GaN forms a "matrix layer" that also grows with the [0 0 0 1] direction perpendicular to the substrate surface. This layer contains small, dense hexagonal pits in which the nanowires nucleate. Using both FESEM and atomic force microscopy (AFM), we identify the pit facets as {1 0 1 2} planes. The nucleation studies show that the use of an AlN buffer layer is essential to the regular formation of the nanowires and matrix layers under our growth conditions. Our typical AlN buffer layer is 40-50 nm thick. We conclude that the nucleation mechanism for nanowires includes formation of nanocolumns in the AlN buffer layer. The propagation of the nanowires in GaN growth appears to be driven by differences in growth rates among crystallographic planes under N-rich conditions. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [31] Catalyst-free thermally-evaporated growth and optical properties of ZnO nanowires on Si, GaN and sapphire substrates
    Tran Van Khai
    Kwak, Dong Sub
    Kwon, Yong Jung
    Shim, Kwang Bo
    Kim, Hyoun Woo
    CRYSTAL RESEARCH AND TECHNOLOGY, 2013, 48 (02) : 75 - 86
  • [32] Catalyst-free synthesis of silicon nanowires by oxidation and reduction process
    Behura, Sanjay K.
    Yang, Qiaoqin
    Hirose, Akira
    Jani, Omkar
    Mukhopadhyay, Indrajit
    JOURNAL OF MATERIALS SCIENCE, 2014, 49 (10) : 3592 - 3597
  • [33] Catalyst-free growth of amorphous silicon nanowires by laser ablation
    F. Kokai
    S. Inoue
    H. Hidaka
    K. Uchiyama
    Y. Takahashi
    A. Koshio
    Applied Physics A, 2013, 112 : 1 - 7
  • [34] Catalyst-Free Heteroepitaxial MOCVD Growth of In As Nanowires on Si Substrates
    Jing, Yi
    Bao, Xinyu
    Wei, Wei
    Li, Chun
    Sun, Ke
    Aplin, David P. R.
    Ding, Yong
    Wang, Zhong-Lin
    Bando, Yoshio
    Wang, Deli
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (03): : 1696 - 1705
  • [35] A catalyst-free method to silicon nanowires at relative low temperature
    Zhu, Hui-Ling
    Lun, Ning
    Zhang, Zheng
    Liu, Rui
    Meng, Xiang-Lin
    Zhang, Bo
    Han, Fu-Dong
    Bai, Yu-Jun
    Bi, Jian-Qiang
    Fan, Run-Hua
    JOURNAL OF CRYSTAL GROWTH, 2010, 312 (24) : 3579 - 3582
  • [36] Catalyst-free selective-area MOVPE of semiconductor nanowires
    Motohisa, Junichi
    Fukui, Takashi
    NANOMATERIAL SYNTHESIS AND INTEGRATION FOR SENSORS, ELECTRONICS, PHOTONICS, AND ELECTRO-OPTICS, 2006, 6370
  • [37] Enhanced luminescence from catalyst-free grown InP nanowires
    Mattila, M.
    Hakkarainen, T.
    Lipsanen, H.
    Jiang, H.
    Kauppinen, E. I.
    APPLIED PHYSICS LETTERS, 2007, 90 (03)
  • [38] Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy
    Schlager, John B.
    Sanford, Norman A.
    Bertness, Kris A.
    Barker, Joy M.
    Roshko, Alexana
    Blanchard, Paul T.
    APPLIED PHYSICS LETTERS, 2006, 88 (21)
  • [39] Catalyst-free growth of InAs nanowires on Si (111) by CBE
    Gomes, U. P.
    Ercolani, D.
    Sibirev, N. V.
    Gemmi, M.
    Dubrovskii, V. G.
    Beltram, F.
    Sorba, L.
    NANOTECHNOLOGY, 2015, 26 (41)
  • [40] Catalyst-free growth of amorphous silicon nanowires by laser ablation
    Kokai, F.
    Inoue, S.
    Hidaka, H.
    Uchiyama, K.
    Takahashi, Y.
    Koshio, A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 112 (01): : 1 - 7