Random generation of Thompson group F

被引:2
|
作者
Polak, Gili Golan [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, Beer Sheva, Israel
关键词
Thompson group F; Random generation; Tree diagrams; RANDOM SUBGROUPS; SOLVABLE-GROUPS; CLASSIFICATION; PROBABILITY; FINITE;
D O I
10.1016/j.jalgebra.2021.11.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that under two natural probabilistic models (studied by Cleary, Elder, Rechnitzer and Taback), the probability of a random pair of elements of Thompson group F generating the entire group is positive. We also prove that for any k generated subgroup H of F which contains a "natural " copy of F, the probability of a random (k+2)-generated subgroup of F coinciding with H is positive. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:507 / 524
页数:18
相关论文
共 50 条
  • [1] Random subgroups of Thompson's group F
    Cleary, Sean
    Elder, Murray
    Rechnitzer, Andrew
    Taback, Jennifer
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2010, 4 (01) : 91 - 126
  • [2] THE THOMPSON GROUP F IS AMENABLE
    Shavgulidze, E. T.
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2009, 12 (02) : 173 - 191
  • [3] Markovianity and the Thompson Group F
    Kostler, Claus
    Krishnan, Arundhathi
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [4] A computational approach to the Thompson group F
    Haagerup, Soren
    Haagerup, Uffe
    Ramirez-Solano, Maria
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2015, 25 (03) : 381 - 432
  • [5] On the cogrowth of Thompson's group F
    Elder, Murray
    Rechnitzer, Andrew
    Wong, Thomas
    [J]. GROUPS COMPLEXITY CRYPTOLOGY, 2012, 4 (02) : 301 - 320
  • [6] THOMPSON'S GROUP F IS NOT LIOUVILLE
    Kaimanovich, Vadim A.
    [J]. GROUPS, GRAPHS AND RANDOM WALKS, 2017, 436 : 300 - 342
  • [7] Thompson's group F is not SCY
    Friedl, Stefan
    Vidussi, Stefano
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (01) : 325 - 329
  • [8] CONJUGACY IN THOMPSON'S GROUP F
    Gill, Nick
    Short, Ian
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1529 - 1538
  • [9] Thompson's group F is not Kahler
    Napier, T
    Ramachandran, M
    [J]. TOPOLOGICAL AND ASYMPTOTIC ASPECTS OF GROUP THEORY, 2006, 394 : 197 - +
  • [10] Autostackability of Thompson's group F
    Corwin, Nathan
    Golan, Gili
    Hermiller, Susan
    Johnson, Ashley
    Sunic, Zoran
    [J]. JOURNAL OF ALGEBRA, 2020, 545 : 111 - 134