Thompson's group F is not Kahler

被引:0
|
作者
Napier, T [1 ]
Ramachandran, M
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
关键词
HNN extension; Riemann surface;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this note is to prove that Richard Thompson's group F and variants of it studied by Ken Brown are not Kahler groups.
引用
收藏
页码:197 / +
页数:3
相关论文
共 50 条
  • [1] On the cogrowth of Thompson's group F
    Elder, Murray
    Rechnitzer, Andrew
    Wong, Thomas
    [J]. GROUPS COMPLEXITY CRYPTOLOGY, 2012, 4 (02) : 301 - 320
  • [2] THOMPSON'S GROUP F IS NOT LIOUVILLE
    Kaimanovich, Vadim A.
    [J]. GROUPS, GRAPHS AND RANDOM WALKS, 2017, 436 : 300 - 342
  • [3] Thompson's group F is not SCY
    Friedl, Stefan
    Vidussi, Stefano
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (01) : 325 - 329
  • [4] CONJUGACY IN THOMPSON'S GROUP F
    Gill, Nick
    Short, Ian
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1529 - 1538
  • [5] Autostackability of Thompson's group F
    Corwin, Nathan
    Golan, Gili
    Hermiller, Susan
    Johnson, Ashley
    Sunic, Zoran
    [J]. JOURNAL OF ALGEBRA, 2020, 545 : 111 - 134
  • [6] Thompson’s group F and the linear group GL∞(ℤ)
    Yan Wu
    Xiaoman Chen
    [J]. Chinese Annals of Mathematics, Series B, 2011, 32 : 863 - 884
  • [7] Combinatorial properties of Thompson's group F
    Cleary, S
    Taback, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (07) : 2825 - 2849
  • [8] Laws with constants in Thompson's group F
    Slanina, Piotr
    Zarzycki, Roland
    [J]. JOURNAL OF GROUP THEORY, 2019, 22 (05) : 783 - 793
  • [9] Interpreting the arithmetic in thompson's group F
    Bardakov, Valery
    Tolstykh, Vladimir
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 211 (03) : 633 - 637
  • [10] Free limits of Thompson’s group F
    Azer Akhmedov
    Melanie Stein
    Jennifer Taback
    [J]. Geometriae Dedicata, 2011, 155 : 163 - 176