A computational approach to the Thompson group F

被引:8
|
作者
Haagerup, Soren
Haagerup, Uffe [1 ]
Ramirez-Solano, Maria [1 ]
机构
[1] Univ Copenhagen, Dept Math Sci, DK-2100 Copenhagen O, Denmark
基金
新加坡国家研究基金会;
关键词
Thompson's group F; estimating norms in group C*-algebras; amenability; Leinert sets; cogrowth; computer calculations; ELEMENTS;
D O I
10.1142/S0218196715500022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F denote the Thompson group with standard generators A = x(0), B = x(1). It is a long standing open problem whether F is an amenable group. By a result of Kesten from 1959, amenability of F is equivalent to (i) \\I + A + B\\ = 3 and to (ii) \\A + A(-1) + B + B-1\\ = 4, where in both cases the norm of an element in the group ring CF is computed in B(l(2)(F)) via the regular representation of F. By extensive numerical computations, we obtain precise lower bounds for the norms in (i) and (ii), as well as good estimates of the spectral distributions of (I + A+ B)* (I + A + B) and of A + A(-1) + B + B-1 with respect to the tracial state tau on the group von Neumann Algebra L(F). Our computational results suggest, that \\I + A + B\\ approximate to 2.95 \\A + A(-1) + B + B-1\\ approximate to 3.87. It is however hard to obtain precise upper bounds for the norms, and our methods cannot be used to prove non-amenability of F.
引用
收藏
页码:381 / 432
页数:52
相关论文
共 50 条
  • [1] Computational explorations in Thompson's group F
    Burillo, Jose
    Cleary, Sean
    Wiest, Bert
    [J]. GEOMETRIC GROUP THEORY, 2007, : 21 - +
  • [2] Computational Explorations of the Thompson Group T for the Amenability Problem of F
    Haagerup, Soren
    Haagerup, Uffe
    Ramirez-Solano, Maria
    [J]. EXPERIMENTAL MATHEMATICS, 2021, 30 (01) : 105 - 126
  • [3] THE THOMPSON GROUP F IS AMENABLE
    Shavgulidze, E. T.
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2009, 12 (02) : 173 - 191
  • [4] Markovianity and the Thompson Group F
    Kostler, Claus
    Krishnan, Arundhathi
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [5] On the cogrowth of Thompson's group F
    Elder, Murray
    Rechnitzer, Andrew
    Wong, Thomas
    [J]. GROUPS COMPLEXITY CRYPTOLOGY, 2012, 4 (02) : 301 - 320
  • [6] THOMPSON'S GROUP F IS NOT LIOUVILLE
    Kaimanovich, Vadim A.
    [J]. GROUPS, GRAPHS AND RANDOM WALKS, 2017, 436 : 300 - 342
  • [7] Thompson's group F is not SCY
    Friedl, Stefan
    Vidussi, Stefano
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (01) : 325 - 329
  • [8] CONJUGACY IN THOMPSON'S GROUP F
    Gill, Nick
    Short, Ian
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1529 - 1538
  • [9] Thompson's group F is not Kahler
    Napier, T
    Ramachandran, M
    [J]. TOPOLOGICAL AND ASYMPTOTIC ASPECTS OF GROUP THEORY, 2006, 394 : 197 - +
  • [10] Autostackability of Thompson's group F
    Corwin, Nathan
    Golan, Gili
    Hermiller, Susan
    Johnson, Ashley
    Sunic, Zoran
    [J]. JOURNAL OF ALGEBRA, 2020, 545 : 111 - 134