A Transitive Aligned Weisfeiler-Lehman Subtree Kernel

被引:0
|
作者
Bai, Lu [1 ]
Rossi, Luca [2 ]
Cui, Lixin [1 ]
Hancock, Edwin R. [3 ]
机构
[1] Cent Univ Finance & Econ, Sch Informat, 39 South Coll Rd, Beijing, Peoples R China
[2] Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England
[3] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
来源
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2016年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we develop a new transitive aligned Weisfeiler-Lehman subtree kernel. This kernel not only overcomes the shortcoming of ignoring correspondence information between isomorphic substructures that arises in existing R-convolution kernels, but also guarantees the transitivity between the correspondence information that is not available for existing matching kernels. Our kernel outperforms state-of-the-art graph kernels in terms of classification accuracy on standard graph datasets.
引用
收藏
页码:396 / 401
页数:6
相关论文
共 50 条
  • [41] Attributed Network Embedding Using an Improved Weisfeiler-Lehman Schema and a Novel Deep Skip-Gram
    Al-Furas, Amr
    Alrahmawy, Mohammed F.
    Alblwi, Abdulaziz
    Al-Adrousy, Waleed Mohamed
    Elmougy, Samir
    IEEE ACCESS, 2023, 11 : 110102 - 110123
  • [42] Weisfeiler-Lehman goes dynamic: An analysis of the expressive power of Graph Neural Networks for attributed and dynamic graphs
    Beddar-Wiesing, Silvia
    D'Inverno, Giuseppe Alessio
    Graziani, Caterina
    Lachi, Veronica
    Moallemy-Oureh, Alice
    Scarselli, Franco
    Thomas, Josephine Maria
    NEURAL NETWORKS, 2024, 173
  • [43] WL-Align: Weisfeiler-Lehman Relabeling for Aligning Users Across Networks via Regularized Representation Learning
    Liu, Li
    Chen, Penggang
    Li, Xin
    Cheung, William K.
    Zhang, Youmin
    Liu, Qun
    Wang, Guoyin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 445 - 458
  • [44] Wasserstein Graph Distance Based on L1-Approximated Tree Edit Distance between Weisfeiler-Lehman Subtrees
    Fang, Zhongxi
    Huang, Jianming
    Su, Xun
    Kasai, Hiroyuki
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 7539 - 7549
  • [45] Weisfeiler and Lehman Go Cellular: CW Networks
    Bodnar, Cristian
    Frasca, Fabrizio
    Otter, Nina
    Wang, Yu Guang
    Lio, Pietro
    Montufar, Guido
    Bronstein, Michael
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [46] Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks
    Bodnar, Cristian
    Frasca, Fabrizio
    Wang, Yu Guang
    Otter, Nina
    Montufar, Guido
    Lio, Pietro
    Bronstein, Michael M.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [47] A Hierarchical Transitive-Aligned Graph Kernel for Un-attributed Graphs
    Bai, Lu
    Cui, Lixin
    Hancock, Edwin R.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [48] Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
    Truong, Quang
    Chin, Peter
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15382 - 15391
  • [49] The Weight Function in the Subtree Kernel is Decisive
    Azais, Romain
    Ingels, Florian
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [50] The weight function in the subtree kernel is decisive
    Azaïs, Romain
    Ingels, Florian
    Journal of Machine Learning Research, 2020, 21