A Transitive Aligned Weisfeiler-Lehman Subtree Kernel

被引:0
|
作者
Bai, Lu [1 ]
Rossi, Luca [2 ]
Cui, Lixin [1 ]
Hancock, Edwin R. [3 ]
机构
[1] Cent Univ Finance & Econ, Sch Informat, 39 South Coll Rd, Beijing, Peoples R China
[2] Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England
[3] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
来源
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2016年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we develop a new transitive aligned Weisfeiler-Lehman subtree kernel. This kernel not only overcomes the shortcoming of ignoring correspondence information between isomorphic substructures that arises in existing R-convolution kernels, but also guarantees the transitivity between the correspondence information that is not available for existing matching kernels. Our kernel outperforms state-of-the-art graph kernels in terms of classification accuracy on standard graph datasets.
引用
收藏
页码:396 / 401
页数:6
相关论文
共 50 条
  • [21] On a New High Dimensional Weisfeiler-Lehman Algorithm
    Sergei Evdokimov
    Marek Karpinski
    Ilia Ponomarenko
    Journal of Algebraic Combinatorics, 1999, 10 : 29 - 45
  • [22] A SHORT TUTORIAL ON THE WEISFEILER-LEHMAN TEST AND ITS VARIANTS
    Huang, Ningyuan
    Villar, Soledad
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 8533 - 8537
  • [23] Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network
    Jin, Wengong
    Coley, Connor W.
    Barzilay, Regina
    Jaakkola, Tommi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [24] Protein Complex Similarity Based on Weisfeiler-Lehman Labeling
    Stoecker, Bianca K.
    Schaefer, Till
    Mutzel, Petra
    Koester, Johannes
    Kriege, Nils
    Rahmann, Sven
    SIMILARITY SEARCH AND APPLICATIONS (SISAP 2019), 2019, 11807 : 308 - 322
  • [25] fMRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics
    Gkirtzou, Katerina
    Honorio, Jean
    Samaras, Dimitris
    Goldstein, Rita
    Blaschko, Matthew B.
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2013), 2013, 8184 : 90 - 97
  • [26] Spectra of symmetric powers of graphs and the Weisfeiler-Lehman refinements
    Alzaga, Afredo
    Iglesias, Rodrigo
    Pignol, Ricardo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (06) : 671 - 682
  • [27] Weisfeiler-Lehman refinement requires at least a linear number of iterations
    Fürer, M
    AUTOMATA LANGUAGES AND PROGRAMMING, PROCEEDING, 2001, 2076 : 322 - 333
  • [28] Beyond Weisfeiler-Lehman with Local Ego-Network Encodings
    Alvarez-Gonzalez, Nurudin
    Kaltenbrunner, Andreas
    Gomez, Vicenc
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (04): : 1234 - 1265
  • [29] Deep Attributed Network Embedding via Weisfeiler-Lehman and Autoencoder
    Al-Furas, Amr Thabit
    Alrahmawy, Mohammed F.
    Al-Adrousy, Waleed Mohamed
    Elmougy, Samir
    IEEE ACCESS, 2022, 10 : 61342 - 61353
  • [30] Graph Kernels Exploiting Weisfeiler-Lehman Graph Isomorphism Test Extensions
    Martino, Giovanni Da San
    Navarin, Nicolo
    Sperduti, Alessandro
    NEURAL INFORMATION PROCESSING (ICONIP 2014), PT II, 2014, 8835 : 93 - 100