A Transitive Aligned Weisfeiler-Lehman Subtree Kernel

被引:0
|
作者
Bai, Lu [1 ]
Rossi, Luca [2 ]
Cui, Lixin [1 ]
Hancock, Edwin R. [3 ]
机构
[1] Cent Univ Finance & Econ, Sch Informat, 39 South Coll Rd, Beijing, Peoples R China
[2] Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England
[3] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
来源
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2016年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we develop a new transitive aligned Weisfeiler-Lehman subtree kernel. This kernel not only overcomes the shortcoming of ignoring correspondence information between isomorphic substructures that arises in existing R-convolution kernels, but also guarantees the transitivity between the correspondence information that is not available for existing matching kernels. Our kernel outperforms state-of-the-art graph kernels in terms of classification accuracy on standard graph datasets.
引用
收藏
页码:396 / 401
页数:6
相关论文
共 50 条
  • [31] Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman graph kernels
    Perez, Raphael Carpintero
    Da Veiga, Sebastien
    Garnier, Josselin
    Staber, Brian
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [32] Predicting Drug-Target Interactions Using Weisfeiler-Lehman Neural Network
    Manoochehri, Hafez Eslami
    Kadiyala, Susmitha Sri
    Nourani, Mehrdad
    2019 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2019,
  • [33] Link Prediction Evaluation Using Palette Weisfeiler-Lehman Graph Labelling Algorithm
    Devi, Salam Jayachitra
    Singh, Buddha
    Raza, Haider
    INTERNATIONAL JOURNAL OF KNOWLEDGE AND SYSTEMS SCIENCE, 2019, 10 (01) : 1 - 20
  • [34] Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
    Feng, Jiarui
    Kong, Lecheng
    Liu, Hao
    Tao, Dacheng
    Li, Fuhai
    Zhang, Muhan
    Chen, Yixin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [35] THE PWLR GRAPH REPRESENTATION: A PERSISTENT WEISFEILER-LEHMAN SCHEME WITH RANDOM WALKS FOR GRAPH CLASSIFICATION
    Park, Sun Woo
    Choi, Yun Young
    Joe, Dosang
    Woo, Youngho
    Choi, U. Jin
    TOPOLOGICAL, ALGEBRAIC AND GEOMETRIC LEARNING WORKSHOPS 2022, VOL 196, 2022, 196
  • [36] Glocalized Weisfeiler-Lehman Graph Kernels: Global-Local Feature Maps of Graphs
    Morris, Christopher
    Kersting, Kristian
    Mutzel, Petra
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 327 - 336
  • [37] 基于Weisfeiler-Lehman图核算法的装配体模型比较方法
    左咪
    邓兰
    薛婷
    闫起源
    机械设计与制造, 2020, (11) : 228 - 231
  • [38] LWP-WL: Link weight prediction based on CNNs and the Weisfeiler-Lehman algorithm
    Zulaika, Unai
    Sanchez-Corcuera, Ruben
    Almeida, Aitor
    Lopez-de-Ipina, Diego
    APPLIED SOFT COMPUTING, 2022, 120
  • [39] An Aligned Subtree Kernel for Weighted Graphs
    Bai, Lu
    Rossi, Luca
    Zhang, Zhihong
    Hancock, Edwin R.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 30 - 39
  • [40] Towards Efficient and Expressive GNNs for Graph Classification via Subgraph-aware Weisfeiler-Lehman
    Wang, Zhaohui
    Cao, Qi
    Shen, Huawei
    Xu, Bingbing
    Zhang, Muhan
    Cheng, Xueqi
    LEARNING ON GRAPHS CONFERENCE, VOL 198, 2022, 198