A Transitive Aligned Weisfeiler-Lehman Subtree Kernel

被引:0
|
作者
Bai, Lu [1 ]
Rossi, Luca [2 ]
Cui, Lixin [1 ]
Hancock, Edwin R. [3 ]
机构
[1] Cent Univ Finance & Econ, Sch Informat, 39 South Coll Rd, Beijing, Peoples R China
[2] Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England
[3] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we develop a new transitive aligned Weisfeiler-Lehman subtree kernel. This kernel not only overcomes the shortcoming of ignoring correspondence information between isomorphic substructures that arises in existing R-convolution kernels, but also guarantees the transitivity between the correspondence information that is not available for existing matching kernels. Our kernel outperforms state-of-the-art graph kernels in terms of classification accuracy on standard graph datasets.
引用
收藏
页码:396 / 401
页数:6
相关论文
共 50 条
  • [1] A generalized Weisfeiler-Lehman graph kernel
    Schulz, Till Hendrik
    Horvath, Tamas
    Welke, Pascal
    Wrobel, Stefan
    MACHINE LEARNING, 2022, 111 (07) : 2601 - 2629
  • [2] A generalized Weisfeiler-Lehman graph kernel
    Till Hendrik Schulz
    Tamás Horváth
    Pascal Welke
    Stefan Wrobel
    Machine Learning, 2022, 111 : 2601 - 2629
  • [3] Learning subtree pattern importance for Weisfeiler-Lehman based graph kernels
    Dai Hai Nguyen
    Canh Hao Nguyen
    Hiroshi Mamitsuka
    Machine Learning, 2021, 110 : 1585 - 1607
  • [4] Learning subtree pattern importance for Weisfeiler-Lehman based graph kernels
    Dai Hai Nguyen
    Canh Hao Nguyen
    Mamitsuka, Hiroshi
    MACHINE LEARNING, 2021, 110 (07) : 1585 - 1607
  • [5] Contextual Weisfeiler-Lehman Graph Kernel For Malware Detection
    Narayanan, Atmamalai
    Meng, Guozhu
    Yang, Liu
    Liu, Jinliang
    Chen, Lihui
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4701 - 4708
  • [6] A combined Weisfeiler-Lehman graph kernel for structured data
    Xu, Lixiang
    Tang, Yuanyan
    Luo, Bin
    Cui, Lixin
    Chen, Xiu
    Xiao, Jin
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (05)
  • [7] THE WEISFEILER-LEHMAN PROCEDURE
    Arvind, V.
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2016, (120): : 68 - 81
  • [8] Weisfeiler-Lehman Graph Kernels
    Shervashidze, Nino
    Schweitzer, Pascal
    van Leeuwen, Erik Jan
    Mehlhorn, Kurt
    Borgwardt, Karsten M.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 2539 - 2561
  • [9] Edged Weisfeiler-Lehman Algorithm
    Yue, Xiao
    Liu, Bo
    Zhang, Feng
    Qu, Guangzhi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT V, 2024, 15020 : 93 - 109
  • [10] Weisfeiler-Lehman graph kernels
    Machine Learning and Computational Biology Research Group, Max Planck Institutes Tubingen, Spemannstr. 38, 72076 Tübingen, Germany
    不详
    不详
    不详
    J. Mach. Learn. Res., (2539-2561):