Multimodal 2D, 2.5D & 3D face verification

被引:22
|
作者
Conde, Cristina [1 ]
Serrano, Angel [1 ]
Cabello, Enrique [1 ]
机构
[1] Univ Rey Juan Carlos, Face Recognit & Artificial Vis Grp, C Tulipan,s-n,Mostoles, E-28933 Madrid, Spain
关键词
biometrics; pattern recognition; image processing;
D O I
10.1109/ICIP.2006.312863
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A multimodal face verification process is presented for standard 2D color images, 2.5D range images and 3D meshes. A normalization in orientation and position is essential for 2.5D and 3D images to obtain a corrected frontal image. This is achieved using the spin images of the nose tip and both eyes, which feed an SVM classifier. First, a traditional Principal Component Analysis followed by an SVM classifier are applied to both 2D and 2.5D images. Second, an Iterative Closest Point algorithm is used to match 3D meshes. In all cases, the equal error rate is computed for different kinds of images in the training and test phases. In general, 2.5D range images show the best results (0.1% EER for frontal images). A special improvement in success rate for turned faces has been obtained for normalized 2.5D and 3D images compared to standard 2D images.
引用
下载
收藏
页码:2061 / +
页数:2
相关论文
共 50 条
  • [1] An automatic 2D, 2.5D & 3D score-based fusion face verification system
    Conde, Cristina
    Serrano, Angel
    Rodriguez-Aragon, Licesio J.
    Cabello, Enrique
    2006 INTERNATIONAL WORKSHOP ON COMPUTER ARCHITECTURE FOR MACHINE PERCEPTION AND SENSING, 2006, : 208 - 213
  • [2] Aim automatic 2D, 2.5D & 3D score-based fusion face verification system
    Conde, Cristina
    Serrano, Angel
    Rodriguez-Aragon, Licesio J.
    Cabello, Enrique
    2006 INTERNATIONAL WORKSHOP ON COMPUTER ARCHITECTURE FOR MACHINE PERCEPTION AND SENSING, 2006, : 214 - 219
  • [3] Multimodal 2d + 3d multi-descriptor tensor for face verification
    Adel Saoud
    Abdelmalik Oumane
    Abdelkrim Ouafi
    Abdelmalik Taleb-Ahmed
    Multimedia Tools and Applications, 2020, 79 : 23071 - 23092
  • [4] Matching 2.5D face scans to 3D models
    Lu, XG
    Jain, AK
    Colbry, D
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (01) : 31 - 43
  • [5] 2D and 3D multimodal hybrid face recognition
    Mian, Ajmal
    Bennamoun, Mohammed
    Owens, Robyn
    COMPUTER VISION - ECCV 2006, PT 3, PROCEEDINGS, 2006, 3953 : 344 - 355
  • [6] 2D 2.5D 3D以及4D之间的差异
    A.KeithTurner
    郭秋英
    测绘通报, 1998, (02) : 43 - 44
  • [7] Multilinear Enhanced Fisher Discriminant Analysis for robust multimodal 2D and 3D face verification
    Bessaoudi, Mohcene
    Belahcene, Mebarka
    Ouamane, Abdelmalik
    Chouchane, Ammar
    Bourennane, Salah
    APPLIED INTELLIGENCE, 2019, 49 (04) : 1339 - 1354
  • [8] Multilinear Enhanced Fisher Discriminant Analysis for robust multimodal 2D and 3D face verification
    Mohcene Bessaoudi
    Mebarka Belahcene
    Abdelmalik Ouamane
    Ammar Chouchane
    Salah Bourennane
    Applied Intelligence, 2019, 49 : 1339 - 1354
  • [9] Automated 2D, 2.5D, and 3D Segmentation of Coral Reef Pointclouds and Orthoprojections
    Runyan, Hugh
    Petrovic, Vid
    Edwards, Clinton B.
    Pedersen, Nicole
    Alcantar, Esmeralda
    Kuester, Falko
    Sandin, Stuart A.
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [10] Electrostatic Discharge Physical Verification of 2.5D/3D Integrated Circuits
    Medhat, Dina
    Dessouky, Mohamed
    Khalil, DiaaEldin
    PROCEEDINGS OF THE TWENTYFIRST INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2020), 2020, : 383 - 388