Multimodal 2D, 2.5D & 3D face verification

被引:22
|
作者
Conde, Cristina [1 ]
Serrano, Angel [1 ]
Cabello, Enrique [1 ]
机构
[1] Univ Rey Juan Carlos, Face Recognit & Artificial Vis Grp, C Tulipan,s-n,Mostoles, E-28933 Madrid, Spain
关键词
biometrics; pattern recognition; image processing;
D O I
10.1109/ICIP.2006.312863
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A multimodal face verification process is presented for standard 2D color images, 2.5D range images and 3D meshes. A normalization in orientation and position is essential for 2.5D and 3D images to obtain a corrected frontal image. This is achieved using the spin images of the nose tip and both eyes, which feed an SVM classifier. First, a traditional Principal Component Analysis followed by an SVM classifier are applied to both 2D and 2.5D images. Second, an Iterative Closest Point algorithm is used to match 3D meshes. In all cases, the equal error rate is computed for different kinds of images in the training and test phases. In general, 2.5D range images show the best results (0.1% EER for frontal images). A special improvement in success rate for turned faces has been obtained for normalized 2.5D and 3D images compared to standard 2D images.
引用
下载
收藏
页码:2061 / +
页数:2
相关论文
共 50 条
  • [21] Skeletonization of 3D Images using 2.5D and 3D Algorithms
    Khan, Mohd. Sherfuddin
    Mankar, Vijay H.
    Prashanthi, G.
    Sathya, G.
    2015 1ST INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), 2015, : 971 - 975
  • [22] Material Technology for 2.5D/3D Package
    Mitsukura, Kazuyuki
    Makino, Tatsuya
    Hatakeyama, Keiichi
    Rebibis, Kenneth June
    Wang, Teng
    Capuz, Giovanni
    Duval, Fabrice
    Detalle, Mikael
    Miller, Andy
    Beyne, Eric
    IEEE CPMT SYMPOSIUM JAPAN 2015, (ICSJ 2015), 2015, : 101 - 104
  • [23] Multimodal interaction for 2D and 3D environments
    Cohen, P
    McGee, D
    Oviatt, S
    Wu, LZ
    Clow, J
    King, R
    Julier, S
    Rosenblum, L
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1999, 19 (04) : 10 - 13
  • [24] Influence of location over several classifiers in 2D and 3D face verification
    Mata, S
    Conde, C
    Sánchez, A
    Cabello, E
    ADVANCED STUDIES IN BIOMETRICS, 2005, 3161 : 153 - 158
  • [25] Refraction-based 2D, 2.5D and 3D medical imaging: Stepping forward to a clinical trial
    Ando, Masami
    Bando, Hiroko
    Endo, Tokiko
    Ichihara, Shu
    Hashirnoto, Eiko
    Hyodo, Kazuyuki
    Kunisada, Toshiyuki
    Li, Gang
    Maksimenko, Anton
    Mori, Kensaku
    Shimao, Daisuke
    Sugiyama, Hiroshi
    Yuasa, Tetsuya
    Ueno, Ei
    EUROPEAN JOURNAL OF RADIOLOGY, 2008, 68 (03) : S32 - S36
  • [26] 2D and 3D face recognition: A survey
    Abate, Andrea F.
    Nappi, Michele
    Riccio, Daniel
    Sabatino, Gabriele
    PATTERN RECOGNITION LETTERS, 2007, 28 (14) : 1885 - 1906
  • [27] 2D/3D VIRTUAL FACE MODELING
    Chung, SoonKee
    Bazin, Jean-Charles
    Kweon, Inso
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1097 - 1100
  • [28] Robust 2D/3D face landmarking
    Akakin, Hatice Cinar
    Akarun, Lale
    Sankur, Buelent
    2007 3DTV CONFERENCE, 2007, : 443 - 446
  • [29] Foundry Perspectives on 2.5D/3D Integration and Roadmap
    Yu, Douglas C. H.
    Wang, Chuei-Tang
    Hsia, Harry
    2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
  • [30] Robust multimodal 2D and 3D face authentication using local feature fusion
    Ouamane, A.
    Belahcene, M.
    Benakcha, A.
    Bourennane, S.
    Taleb-Ahmed, A.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (01) : 129 - 137