Radial basis approximation for Newtonian potentials

被引:0
|
作者
Li, Xin [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
Radial basis approximation; Newtonian potentials; Poisson's equations; POISSONS-EQUATION; SCATTERED DATA;
D O I
10.1007/s10444-009-9117-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper Newtonian potentials for particular solutions of Poisson's equations are constructively approximated by using radial bases with the order of approximation derived.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [21] RADIAL BASIS FUNCTION APPROXIMATION IN THE DUAL RECIPROCITY METHOD
    KARUR, SR
    RAMACHANDRAN, PA
    MATHEMATICAL AND COMPUTER MODELLING, 1994, 20 (07) : 59 - 70
  • [22] A radial basis function network (RBFN) for function approximation
    Lucks, MB
    Oki, N
    42ND MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1999, : 1099 - 1101
  • [23] Radial basis approximation and its application to biharmonic equation
    Xin Li
    Advances in Computational Mathematics, 2010, 32 : 275 - 302
  • [24] Vector field approximation using radial basis functions
    Cervantes Cabrera, Daniel A.
    Gonzalez-Casanova, Pedro
    Gout, Christian
    Hector Juarez, L.
    Rafael Resendiz, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 240 : 163 - 173
  • [25] Improving the Approximation Smoothness of Radial Basis Neural Networks
    Little, Anthony
    Reznik, Leonid
    Journal of Advanced Computational Intelligence and Intelligent Informatics, 2000, 4 (06) : 417 - 420
  • [26] Radial basis approximation and its application to biharmonic equation
    Li, Xin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 32 (03) : 275 - 302
  • [27] Approximation by radial basis functions with finitely many centers
    Schaback, R
    CONSTRUCTIVE APPROXIMATION, 1996, 12 (03) : 331 - 340
  • [28] DATA APPROXIMATION USING POLYHARMONIC RADIAL BASIS FUNCTIONS
    Segeth, Karel
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 20, 2021, : 129 - 138
  • [29] Multiscale approximation with hierarchical radial basis functions networks
    Ferrari, S
    Maggioni, M
    Borghese, NA
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (01): : 178 - 188
  • [30] Options valuation by using radial basis function approximation
    Goto, Yumi
    Fel, Zhal
    Kan, Shen
    Kita, Eisuke
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2007, 31 (10) : 836 - 843