DATA APPROXIMATION USING POLYHARMONIC RADIAL BASIS FUNCTIONS

被引:0
|
作者
Segeth, Karel [1 ]
机构
[1] Tech Univ Liberec, Fac Mechatron Informat & Interdisciplinary Studie, Inst New Technol & Appl Informat, Studentska 2, Liberec 46117, Czech Republic
关键词
polyharmonic spline; radial basis function; approximation; data fitting; interpolation;
D O I
10.21136/panm.2020.13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with the approximation and interpolation employing polyharmonic splines in multivariate problems. The properties of approximants and interpolants based on these radial basis functions are shown. The methods of such data fitting are applied in practice to treat the problems of, e.g., geographic information systems, signal processing, etc. A simple 1D computational example is presented.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 50 条
  • [1] Surface approximation of curved data using separable radial basis functions
    Crampton, A
    Mason, JC
    ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY V, 2001, 57 : 118 - 125
  • [2] Vector field approximation using radial basis functions
    Cervantes Cabrera, Daniel A.
    Gonzalez-Casanova, Pedro
    Gout, Christian
    Hector Juarez, L.
    Rafael Resendiz, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 240 : 163 - 173
  • [3] Big geo data surface approximation using radial basis functions: A comparative study
    Majdisova, Zuzana
    Skala, Vaclav
    COMPUTERS & GEOSCIENCES, 2017, 109 : 51 - 58
  • [4] Approximation of 3D trapezoidal fuzzy data using radial basis functions
    Gonzalez-Rodelas, P.
    Idais, H.
    Pasadas, M.
    Yasin, M.
    FUZZY SETS AND SYSTEMS, 2023, 453 : 82 - 94
  • [5] Approximation with fractal radial basis functions
    Kumar, D.
    Chand, A. K. B.
    Massopust, P. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 454
  • [6] Approximation on the sphere using radial basis functions plus polynomials
    Ian H. Sloan
    Alvise Sommariva
    Advances in Computational Mathematics, 2008, 29 : 147 - 177
  • [7] Approximation on the sphere using radial basis functions plus polynomials
    Sloan, Ian H.
    Sommariva, Alvise
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 29 (02) : 147 - 177
  • [8] Approximation using Gaussian Radial Basis Functions at Different Scales
    Levesley, Jeremy
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [9] Approximation of insurance liability contracts using radial basis functions
    Singor, Stefan N.
    Schols, Eric
    Oosterlee, Cornelis W.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (11) : 2245 - 2271
  • [10] NUMERICAL APPROXIMATION OF THE SMOLUCHOWSKI EQUATION USING RADIAL BASIS FUNCTIONS
    Helzel, Christiane
    Schneiders, Maximilian
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2020, 38 (01) : 176 - 194