Radial basis approximation for Newtonian potentials

被引:0
|
作者
Li, Xin [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
Radial basis approximation; Newtonian potentials; Poisson's equations; POISSONS-EQUATION; SCATTERED DATA;
D O I
10.1007/s10444-009-9117-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper Newtonian potentials for particular solutions of Poisson's equations are constructively approximated by using radial bases with the order of approximation derived.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [31] Integrated radial-basis-function networks for computing Newtonian and non-Newtonian fluid flows
    Mai-Duy, N.
    Tran-Cong, T.
    COMPUTERS & STRUCTURES, 2009, 87 (11-12) : 642 - 650
  • [32] SEMICLASSICAL APPROXIMATION OF RADIAL EQUATION WITH 2-DIMENSIONAL POTENTIALS
    CROTHERS, DSF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (03): : 473 - 475
  • [33] SEMICLASSICAL APPROXIMATION OF RADIAL EQUATION WITH 2-DIMENSIONAL POTENTIALS
    BERRY, MV
    OZORIODE.AM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1973, 6 (10): : 1451 - 1460
  • [34] Universal approximation by radial basis function networks of Delsarte translates
    Arteaga, Cristian
    Marrero, Isabel
    NEURAL NETWORKS, 2013, 46 : 299 - 305
  • [35] Pointwise approximation with quasi-interpolation by radial basis functions
    Buhmann, Martin D.
    Dai, Feng
    JOURNAL OF APPROXIMATION THEORY, 2015, 192 : 156 - 192
  • [36] Radial Basis Function Approximation in Gas Turbine Overspeed Analysis
    Peters, Lukas
    Goebel, Vincent
    Schoof, Soenke
    Kutzner, Ruediger
    Schaefer, Marc
    Hofmann, Lutz
    2022 10TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2022, : 108 - 113
  • [37] Approximation on the sphere using radial basis functions plus polynomials
    Ian H. Sloan
    Alvise Sommariva
    Advances in Computational Mathematics, 2008, 29 : 147 - 177
  • [38] Approximation of Bivariate Functions by Generalized Wendland Radial Basis Functions
    Kouibia, Abdelouahed
    Gonzalez, Pedro
    Pasadas, Miguel
    Mustafa, Bassim
    Yakhlef, Hossain Oulad
    Omri, Loubna
    MATHEMATICS, 2024, 12 (16)
  • [39] Radial basis function approximation of noisy scattered data on the sphere
    Kerstin Hesse
    Ian H. Sloan
    Robert S. Womersley
    Numerische Mathematik, 2017, 137 : 579 - 605
  • [40] On the universal approximation property of radial basis function neural networks
    Ismayilova, Aysu
    Ismayilov, Muhammad
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2024, 92 (03) : 691 - 701