SecureFL: Privacy Preserving Federated Learning with SGX and TrustZone

被引:11
|
作者
Kuznetsov, Eugene [1 ]
Chen, Yitao [1 ]
Zhao, Ming [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Federated Learning; Privacy; Edge Computing; Trusted Execution Environment;
D O I
10.1145/3453142.3491287
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated learning allows a large group of edge workers to collaboratively train a shared model without revealing their local data. It has become a powerful tool for deep learning in heterogeneous environments. User privacy is preserved by keeping the training data local to each device. However, federated learning still requires workers to share their weights, which can leak private information during collaboration. This paper introduces SecureFL, a practical framework that provides end-to-end security of federated learning. SecureFL integrates widely available Trusted Execution Environments (TEE) to protect against privacy leaks. SecureFL also uses carefully designed partitioning and aggregation techniques to ensure TEE efficiency on both the cloud and edge workers. SecureFL is both practical and efficient in securing the end-to-end process of federated learning, providing reasonable overhead given the privacy benefits. The paper provides thorough security analysis and performance evaluation of SecureFL, which show that the overhead is reasonable considering the substantial privacy benefits that it provides.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条
  • [41] Privacy-Preserving and Reliable Distributed Federated Learning
    Dong, Yipeng
    Zhang, Lei
    Xu, Lin
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT I, 2024, 14487 : 130 - 149
  • [42] Measuring Contributions in Privacy-Preserving Federated Learning
    Pejo, Balazs
    Biczok, Gergely
    Acs, Gergely
    ERCIM NEWS, 2021, (126): : 35 - 36
  • [43] A Privacy-Preserving and Verifiable Federated Learning Scheme
    Zhang, Xianglong
    Fu, Anmin
    Wang, Huaqun
    Zhou, Chunyi
    Chen, Zhenzhu
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [44] PRIVACY-PRESERVING SERVICES USING FEDERATED LEARNING
    Taylor, Paul
    Kiss, Stephanie
    Gullon, Lucy
    Yearling, David
    Journal of the Institute of Telecommunications Professionals, 2022, 16 : 16 - 22
  • [45] Preserving User Privacy for Machine Learning: Local Differential Privacy or Federated Machine Learning?
    Zheng, Huadi
    Hu, Haibo
    Han, Ziyang
    IEEE INTELLIGENT SYSTEMS, 2020, 35 (04) : 5 - 14
  • [46] Privacy-preserving federated learning with non-transfer learning
    Xu M.
    Li X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (04): : 89 - 99
  • [47] PPeFL: Privacy-Preserving Edge Federated Learning With Local Differential Privacy
    Wang, Baocang
    Chen, Yange
    Jiang, Hang
    Zhao, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15488 - 15500
  • [48] PASTEL: Privacy-Preserving Federated Learning in Edge Computing
    Elhattab, Fatima
    Bouchenak, Sara
    Boscher, Cedric
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2023, 7 (04):
  • [49] Visual Object Detection for Privacy-Preserving Federated Learning
    Zhang, Jing
    Zhou, Jiting
    Guo, Jinyang
    Sun, Xiaohan
    IEEE ACCESS, 2023, 11 : 33324 - 33335
  • [50] PVFL: Verifiable federated learning and prediction with privacy-preserving
    Yin, Benxin
    Zhang, Hanlin
    Lin, Jie
    Kong, Fanyu
    Yu, Leyun
    COMPUTERS & SECURITY, 2024, 139