SecureFL: Privacy Preserving Federated Learning with SGX and TrustZone

被引:11
|
作者
Kuznetsov, Eugene [1 ]
Chen, Yitao [1 ]
Zhao, Ming [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Federated Learning; Privacy; Edge Computing; Trusted Execution Environment;
D O I
10.1145/3453142.3491287
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated learning allows a large group of edge workers to collaboratively train a shared model without revealing their local data. It has become a powerful tool for deep learning in heterogeneous environments. User privacy is preserved by keeping the training data local to each device. However, federated learning still requires workers to share their weights, which can leak private information during collaboration. This paper introduces SecureFL, a practical framework that provides end-to-end security of federated learning. SecureFL integrates widely available Trusted Execution Environments (TEE) to protect against privacy leaks. SecureFL also uses carefully designed partitioning and aggregation techniques to ensure TEE efficiency on both the cloud and edge workers. SecureFL is both practical and efficient in securing the end-to-end process of federated learning, providing reasonable overhead given the privacy benefits. The paper provides thorough security analysis and performance evaluation of SecureFL, which show that the overhead is reasonable considering the substantial privacy benefits that it provides.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条
  • [21] Privacy-preserving Heterogeneous Federated Transfer Learning
    Gao, Dashan
    Liu, Yang
    Huang, Anbu
    Ju, Ce
    Yu, Han
    Yang, Qiang
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2552 - 2559
  • [22] A Personalized Privacy-Preserving Scheme for Federated Learning
    Li, Zhenyu
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1352 - 1356
  • [23] PPFLV: privacy-preserving federated learning with verifiability
    Zhou, Qun
    Shen, Wenting
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12727 - 12743
  • [24] A Syntactic Approach for Privacy-Preserving Federated Learning
    Choudhury, Olivia
    Gkoulalas-Divanis, Aris
    Salonidis, Theodoros
    Sylla, Issa
    Park, Yoonyoung
    Hsu, Grace
    Das, Amar
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1762 - 1769
  • [25] Privacy-preserving federated learning for radiotherapy applications
    Hayati, H.
    Heijmans, S.
    Persoon, L.
    Murguia, C.
    van de Wouw, N.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S238 - S240
  • [26] POSTER: Privacy-preserving Federated Active Learning
    Kurniawan, Hendra
    Mambo, Masahiro
    SCIENCE OF CYBER SECURITY, SCISEC 2022 WORKSHOPS, 2022, 1680 : 223 - 226
  • [27] FORECASTING WITH VISIBILITY USING PRIVACY PRESERVING FEDERATED LEARNING
    Zhang, Bo
    Tan, Wen Jun
    Cai, Wentong
    Zhang, Allan N.
    2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 2687 - 2698
  • [28] An adaptive federated learning scheme with differential privacy preserving
    Wu, Xiang
    Zhang, Yongting
    Shi, Minyu
    Li, Pei
    Li, Ruirui
    Xiong, Neal N.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 127 : 362 - 372
  • [29] Federated Mimic Learning for Privacy Preserving Intrusion Detection
    Al-Marri, Noor Ali Al-Athba
    Ciftler, Bekir S.
    Abdallah, Mohamed M.
    2020 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING (BLACKSEACOM), 2020,
  • [30] AddShare: A Privacy-Preserving Approach for Federated Learning
    Asare, Bernard Atiemo
    Branco, Paula
    Kiringa, Iluju
    Yeap, Tet
    COMPUTER SECURITY. ESORICS 2023 INTERNATIONAL WORKSHOPS, PT I, 2024, 14398 : 299 - 309