Visual Object Detection for Privacy-Preserving Federated Learning

被引:5
|
作者
Zhang, Jing [1 ]
Zhou, Jiting [1 ]
Guo, Jinyang [2 ]
Sun, Xiaohan [1 ]
机构
[1] Shanghai Univ, Shanghai Film Acad, Shanghai 200072, Peoples R China
[2] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
关键词
Federated learning; Privacy; Blockchains; Smart contracts; Visualization; Object detection; Data models; differential privacy; object detection; blockchain; smart contract;
D O I
10.1109/ACCESS.2023.3263533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual object detection is a computer vision technique based on deep learning. However, due to privacy issues, it is highly challenging to build an object detection model according to the current methods on the centrally stored training dataset. Federated learning is an effective approach to solving the challenge of training data collection by using distributed training. We propose FedVisionBC, a blockchain-based federated learning system for visual object detection that addresses the challenges of single point of failure, model poisoning attacks, and membership inference attacks in traditional federated learning. In the FedVisionBC system, we set up an aggregation node and a verification node instead of a central server to solve the single point of failure problem. We establish a security mechanism that uses encryption techniques, verification nodes, and smart contracts to resist model poisoning attacks. Experimental results show that FedVisionBC can accomplish the object detection task when the percentage of malicious clients is less than 60%. We also propose a new algorithm, ADPFedAvg, to prevent membership inference attacks, which relies on user-level differential privacy technology and the federated average algorithm. Experimental results indicate that ADPFedAvg can achieve a large-scale visual object detection model with differential privacy protection, while only a negligible cost in predictive accuracy.
引用
收藏
页码:33324 / 33335
页数:12
相关论文
共 50 条
  • [1] Medical Image Object Detection Algorithm for Privacy-Preserving Federated Learning
    Wang S.
    Lu S.
    Cao B.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (10): : 1553 - 1562
  • [2] Privacy-Preserving Detection of Poisoning Attacks in Federated Learning
    Muhr, Trent
    Zhang, Wensheng
    2022 19TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY & TRUST (PST), 2022,
  • [3] Privacy-preserving Federated Learning System for Fatigue Detection
    Mohammadi, Mohammadreza
    Allocca, Roberto
    Eklund, David
    Shrestha, Rakesh
    Sinaei, Sima
    2023 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2023, : 624 - 629
  • [4] Privacy-Preserving Personalized Federated Learning
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [5] Frameworks for Privacy-Preserving Federated Learning
    Phong, Le Trieu
    Phuong, Tran Thi
    Wang, Lihua
    Ozawa, Seiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 2 - 12
  • [6] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [7] Adaptive privacy-preserving federated learning
    Xiaoyuan Liu
    Hongwei Li
    Guowen Xu
    Rongxing Lu
    Miao He
    Peer-to-Peer Networking and Applications, 2020, 13 : 2356 - 2366
  • [8] Privacy-preserving Techniques in Federated Learning
    Liu Y.-X.
    Chen H.
    Liu Y.-H.
    Li C.-P.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 1057 - 1092
  • [9] Federated learning for privacy-preserving AI
    Cheng, Yong
    Liu, Yang
    Chen, Tianjian
    Yang, Qiang
    COMMUNICATIONS OF THE ACM, 2020, 63 (12) : 33 - 36
  • [10] Privacy-Preserving and Reliable Federated Learning
    Lu, Yi
    Zhang, Lei
    Wang, Lulu
    Gao, Yuanyuan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 346 - 361