CodeNeRF: Disentangled Neural Radiance Fields for Object Categories

被引:70
|
作者
Jang, Wonbong [1 ]
Agapito, Lourdes [1 ]
机构
[1] UCL, Dept Comp Sci, London, England
关键词
D O I
10.1109/ICCV48922.2021.01271
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
CodeNeRF is an implicit 3D neural representation that learns the variation of object shapes and textures across a category and can be trained, from a set of posed images, to synthesize novel views of unseen objects. Unlike the original NeRF, which is scene specific, CodeNeRF learns to disentangle shape and texture by learning separate embeddings. At test time, given a single unposed image of an unseen object, CodeNeRF jointly estimates camera viewpoint, and shape and appearance codes via optimization. Unseen objects can be reconstructed from a single image, and then rendered from new viewpoints or their shape and texture edited by varying the latent codes. We conduct experiments on the SRN benchmark, which show that CodeNeRF generalises well to unseen objects and achieves on-par performance with methods that require known camera pose at test time. Our results on real-world images demonstrate that CodeNeRF can bridge the sim-to-real gap. Project page: https://github.com/wayne1123/code-nerf
引用
收藏
页码:12929 / 12938
页数:10
相关论文
共 50 条
  • [31] CopyRNeRF: Protecting the CopyRight of Neural Radiance Fields
    Luo, Ziyuan
    Guo, Qing
    Cheung, Ka Chun
    See, Simon
    Wan, Renjie
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 22344 - 22354
  • [32] CamP: Camera Preconditioning for Neural Radiance Fields
    Park, Keunhong
    Henzler, Philipp
    Mildenhall, Ben
    Barron, Jonathan T.
    Martin-Brualla, Ricardo
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [33] Cross-Spectral Neural Radiance Fields
    Poggi, Matteo
    Ramirez, Pierluigi Zama
    Tosi, Fabio
    Salti, Samuele
    Mattoccia, Stefano
    Di Stefano, Luigi
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 606 - 616
  • [34] NeRFshop: Interactive Editing of Neural Radiance Fields
    Jambon, Clement
    Kerbl, Bernhard
    Kopanas, Georgios
    Diolatzis, Stavros
    Leimkuhler, Thomas
    Drettakis, George
    PROCEEDINGS OF THE ACM ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, 2023, 6 (01)
  • [35] ScanNeRF: a Scalable Benchmark for Neural Radiance Fields
    De Luigi, Luca
    Bolognini, Damiano
    Domeniconi, Federico
    De Gregorio, Daniele
    Poggi, Matteo
    Di Stefano, Luigi
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 816 - 825
  • [36] Self-Calibrating Neural Radiance Fields
    Jeong, Yoonwoo
    Ahn, Seokjun
    Choy, Christopher
    Anandkumar, Animashree
    Cho, Minsu
    Park, Jaesik
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5826 - 5834
  • [37] Plenoxels: Radiance Fields without Neural Networks
    Fridovich-Keil, Sara
    Yu, Alex
    Tancik, Matthew
    Chen, Qinhong
    Recht, Benjamin
    Kanazawa, Angjoo
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5491 - 5500
  • [38] FENeRF: Face Editing in Neural Radiance Fields
    Sun, Jingxiang
    Wang, Xuan
    Zhang, Yong
    Li, Xiaoyu
    Zhang, Qi
    Liu, Yebin
    Wang, Jue
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7662 - 7672
  • [39] Removing Objects From Neural Radiance Fields
    Weder, Silvan
    Garcia-Hernando, Guillermo
    Monszpart, Aron
    Pollefeys, Marc
    Brostow, Gabriel
    Firman, Michael
    Vicente, Sara
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 16528 - 16538
  • [40] Instant Continual Learning of Neural Radiance Fields
    Po, Ryan
    Dong, Zhengyang
    Bergman, Alexander W.
    Wetzstein, Gordon
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 3326 - 3336