CodeNeRF: Disentangled Neural Radiance Fields for Object Categories

被引:70
|
作者
Jang, Wonbong [1 ]
Agapito, Lourdes [1 ]
机构
[1] UCL, Dept Comp Sci, London, England
关键词
D O I
10.1109/ICCV48922.2021.01271
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
CodeNeRF is an implicit 3D neural representation that learns the variation of object shapes and textures across a category and can be trained, from a set of posed images, to synthesize novel views of unseen objects. Unlike the original NeRF, which is scene specific, CodeNeRF learns to disentangle shape and texture by learning separate embeddings. At test time, given a single unposed image of an unseen object, CodeNeRF jointly estimates camera viewpoint, and shape and appearance codes via optimization. Unseen objects can be reconstructed from a single image, and then rendered from new viewpoints or their shape and texture edited by varying the latent codes. We conduct experiments on the SRN benchmark, which show that CodeNeRF generalises well to unseen objects and achieves on-par performance with methods that require known camera pose at test time. Our results on real-world images demonstrate that CodeNeRF can bridge the sim-to-real gap. Project page: https://github.com/wayne1123/code-nerf
引用
收藏
页码:12929 / 12938
页数:10
相关论文
共 50 条
  • [21] EfficientNeRF - Efficient Neural Radiance Fields
    Hu, Tao
    Liu, Shu
    Chen, Yilun
    Shen, Tiancheng
    Jia, Jiaya
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12892 - 12901
  • [22] Nerfies: Deformable Neural Radiance Fields
    Park, Keunhong
    Sinha, Utkarsh
    Barron, Jonathan T.
    Bouaziz, Sofien
    Goldman, Dan B.
    Seitz, Steven M.
    Martin-Brualla, Ricardo
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5845 - 5854
  • [23] Convolutional Neural Opacity Radiance Fields
    Luo, Haimin
    Chen, Anpei
    Zhang, Qixuan
    Pang, Bai
    Wu, Minye
    Xu, Lan
    Yu, Jingyi
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP), 2021,
  • [24] NeRF-Loc: Transformer-Based Object Localization Within Neural Radiance Fields
    Sun, Jiankai
    Xu, Yan
    Ding, Mingyu
    Yi, Hongwei
    Wang, Chen
    Wang, Jingdong
    Zhang, Liangjun
    Schwager, Mac
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08) : 5244 - 5250
  • [25] HOSNeRF: Dynamic Human-Object-Scene Neural Radiance Fields from a Single Video
    Liu, Jia-Wei
    Cao, Yan-Pei
    Yang, Tianyuan
    Xu, Zhongcong
    Keppo, Jussi
    Shan, Ying
    Qie, Xiaohu
    Shou, Mike Zheng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18437 - 18448
  • [26] Generative Deformable Radiance Fields for Disentangled Image Synthesis of Topology-Varying Objects
    Wang, Ziyu
    Deng, Yu
    Yang, Jiaolong
    Yu, Jingyi
    Tong, Xin
    COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 431 - 442
  • [27] LaTeRF: Label and Text Driven Object Radiance Fields
    Mirzaei, Ashkan
    Kant, Yash
    Kelly, Jonathan
    Gilitschenski, Igor
    COMPUTER VISION - ECCV 2022, PT III, 2022, 13663 : 20 - 36
  • [28] Slot-guided Volumetric Object Radiance Fields
    Qi, Di
    Yang, Tong
    Zhang, Xiangyu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [29] Eigengrasp-Conditioned Neural Radiance Fields
    Aizawa, Hiroaki
    Naramura, Itoshi
    IEEE ACCESS, 2023, 11 : 121629 - 121636
  • [30] DDNeRF: Depth Distribution Neural Radiance Fields
    Dadon, David
    Fried, Ohad
    Hel-Or, Yacov
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 755 - 763