A Synergic Potential of Antimicrobial Peptides against Pseudomonas syringae pv. actinidiae

被引:18
|
作者
Mariz-Ponte, Nuno [1 ,2 ,3 ]
Regalado, Laura [1 ,2 ]
Gimranov, Emil [1 ,2 ]
Tassi, Natalia [4 ]
Moura, Luisa [5 ]
Gomes, Paula [4 ]
Tavares, Fernando [1 ,3 ]
Santos, Conceicao [1 ,2 ]
Teixeira, Catia [4 ]
机构
[1] Univ Porto FCUP, Fac Sci, Biol Dept, P-4169007 Porto, Portugal
[2] Univ Porto, Fac Sci FCUP, Biol Dept, LAQV REQUIMTE, P-4169007 Porto, Portugal
[3] Univ Porto, Microbial Divers & Evolut Grp, In BIO Associate Lab, CIBIO Res Ctr Biodivers & Genet Resources, P-4485661 Vairao, Portugal
[4] Univ Porto, Fac Sci FCUP, Dept Chem & Biochem, LAQV REQUIMTE, P-4169007 Porto, Portugal
[5] Inst Politecn Viana Do Castelo, CISAS Ctr Res & Dev Agrifood Syst & Sustainabil, P-4900347 Viana Do Castelo, Portugal
来源
MOLECULES | 2021年 / 26卷 / 05期
基金
欧盟地平线“2020”;
关键词
3; 1; Actinidia sp; antimicrobial peptides; bacterial canker of kiwifruit; BP100; CA-M; Dhvar-5; Pseudomonas syringae pv; actinidiae; RW-BP100; FIELD-BASED EVIDENCE; COPPER CONTAMINATION; ERWINIA-AMYLOVORA; NEW-ZEALAND; RESISTANCE; MEMBRANES; MECHANISM; EFFICACY; STRAINS; CANKER;
D O I
10.3390/molecules26051461
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pseudomonas syringae pv. actinidiae (Psa) is the pathogenic agent responsible for the bacterial canker of kiwifruit (BCK) leading to major losses in kiwifruit productions. No effective treatments and measures have yet been found to control this disease. Despite antimicrobial peptides (AMPs) having been successfully used for the control of several pathogenic bacteria, few studies have focused on the use of AMPs against Psa. In this study, the potential of six AMPs (BP100, RW-BP100, CA-M, 3.1, D4E1, and Dhvar-5) to control Psa was investigated. The minimal inhibitory and bactericidal concentrations (MIC and MBC) were determined and membrane damaging capacity was evaluated by flow cytometry analysis. Among the tested AMPs, the higher inhibitory and bactericidal capacity was observed for BP100 and CA-M with MIC of 3.4 and 3.4-6.2 mu M, respectively and MBC 3.4-10 mu M for both. Flow cytometry assays suggested a faster membrane permeation for peptide 3.1, in comparison with the other AMPs studied. Peptide mixtures were also tested, disclosing the high efficiency of BP100:3.1 at low concentration to reduce Psa viability. These results highlight the potential interest of AMP mixtures against Psa, and 3.1 as an antimicrobial molecule that can improve other treatments in synergic action.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Isolation and identification of Pseudomonas syringae pv. actinidiae in Shaanxi Province, China
    Jing, Z. B.
    Yao, C. C.
    Liu, Z. D.
    IX INTERNATIONAL SYMPOSIUM ON KIWIFRUIT, 2018, 1218 : 279 - 285
  • [32] Molecular characterisation of an endophyte showing a strong antagonistic activity against Pseudomonas syringae pv. actinidiae
    Tontou, Rodanthi
    Gaggia, Francesca
    Baffoni, Loredana
    Devescovi, Giulia
    Venturi, Vittorio
    Giovanardi, Davide
    Stefani, Emilio
    PLANT AND SOIL, 2016, 405 (1-2) : 97 - 106
  • [33] An in vitro Actinidia Bioassay to Evaluate the Resistance to Pseudomonas syringae pv. actinidiae
    Wang, Faming
    Li, Jiewei
    Ye, Kaiyu
    Liu, Pingping
    Gong, Hongjuan
    Jiang, Qiaosheng
    Qi, Beibei
    Mo, Quanhui
    PLANT PATHOLOGY JOURNAL, 2019, 35 (04): : 372 - 380
  • [34] Transcriptome analysis of the Pseudomonas syringae pv. actinidiae (Psa) pathogenesis process
    Michelotti, V
    Lamontanara, A.
    Orru, L.
    Buriani, G.
    Donati, I
    Fiorentini, L.
    Tacconi, G.
    Spinelli, F.
    IX INTERNATIONAL SYMPOSIUM ON KIWIFRUIT, 2018, 1218 : 321 - 326
  • [35] Pseudomonas syringae pv. actinidiae: Ecology, Infection Dynamics and Disease Epidemiology
    Irene Donati
    Antonio Cellini
    Daniela Sangiorgio
    Joel L. Vanneste
    Marco Scortichini
    Giorgio M. Balestra
    Francesco Spinelli
    Microbial Ecology, 2020, 80 : 81 - 102
  • [36] Modification of the phyllosphere bacterial biocoenosis by Pseudomonas syringae pv. actinidiae infection
    Buriani, G.
    Orru, L.
    Lamontanara, A.
    Michelotti, V
    Donati, I
    Cellini, A.
    Tacconi, G.
    Spinelli, F.
    IX INTERNATIONAL SYMPOSIUM ON KIWIFRUIT, 2018, 1218 : 275 - 278
  • [37] DIVERSITY OF IRANIAN STRAINS OF PSEUDOMONAS SYRINGAE pv. SYRINGAE AND PSEUDOMONAS SYRINGAE pv. LACHRYMANS
    Izadiyan, M.
    Taghavi, S. M.
    JOURNAL OF PLANT PATHOLOGY, 2017, 99 (02) : 487 - 491
  • [38] Pseudomonas azotoformans and Pseudomonas putida: Novel kiwifruit-native biological control agents against Pseudomonas syringae pv. actinidiae
    Correia, Cristiana
    Cellini, Antonio
    Donati, Irene
    Voulgaris, Panagiotis
    Obafemi, Adebayo Ebenezer
    Soriato, Elia
    Vandelle, Elodie
    Santos, Conceicao
    Spinelli, Francesco
    BIOLOGICAL CONTROL, 2025, 201
  • [39] Isolation of the Novel Phage PHB09 and Its Potential Use against the Plant Pathogen Pseudomonas syringae pv. actinidiae
    Liu, Yanxi
    Liu, Mengjiao
    Hu, Ran
    Bai, Jun
    He, Xiaoqing
    Jin, Yi
    VIRUSES-BASEL, 2021, 13 (11):
  • [40] EMS Mutagenesis and Selection of Genotypes Resistant or Tolerant to Pseudomonas syringae pv. actinidiae
    Sartori, A.
    Bevilacqua, D.
    Terlizzi, M.
    Di Cintio, A.
    Rosato, T.
    Caboni, E.
    Ferrante, P.
    Scortichini, M.
    Cipriani, G.
    VIII INTERNATIONAL SYMPOSIUM ON KIWIFRUIT, 2015, 1096 : 221 - 228