A Synergic Potential of Antimicrobial Peptides against Pseudomonas syringae pv. actinidiae

被引:18
|
作者
Mariz-Ponte, Nuno [1 ,2 ,3 ]
Regalado, Laura [1 ,2 ]
Gimranov, Emil [1 ,2 ]
Tassi, Natalia [4 ]
Moura, Luisa [5 ]
Gomes, Paula [4 ]
Tavares, Fernando [1 ,3 ]
Santos, Conceicao [1 ,2 ]
Teixeira, Catia [4 ]
机构
[1] Univ Porto FCUP, Fac Sci, Biol Dept, P-4169007 Porto, Portugal
[2] Univ Porto, Fac Sci FCUP, Biol Dept, LAQV REQUIMTE, P-4169007 Porto, Portugal
[3] Univ Porto, Microbial Divers & Evolut Grp, In BIO Associate Lab, CIBIO Res Ctr Biodivers & Genet Resources, P-4485661 Vairao, Portugal
[4] Univ Porto, Fac Sci FCUP, Dept Chem & Biochem, LAQV REQUIMTE, P-4169007 Porto, Portugal
[5] Inst Politecn Viana Do Castelo, CISAS Ctr Res & Dev Agrifood Syst & Sustainabil, P-4900347 Viana Do Castelo, Portugal
来源
MOLECULES | 2021年 / 26卷 / 05期
基金
欧盟地平线“2020”;
关键词
3; 1; Actinidia sp; antimicrobial peptides; bacterial canker of kiwifruit; BP100; CA-M; Dhvar-5; Pseudomonas syringae pv; actinidiae; RW-BP100; FIELD-BASED EVIDENCE; COPPER CONTAMINATION; ERWINIA-AMYLOVORA; NEW-ZEALAND; RESISTANCE; MEMBRANES; MECHANISM; EFFICACY; STRAINS; CANKER;
D O I
10.3390/molecules26051461
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pseudomonas syringae pv. actinidiae (Psa) is the pathogenic agent responsible for the bacterial canker of kiwifruit (BCK) leading to major losses in kiwifruit productions. No effective treatments and measures have yet been found to control this disease. Despite antimicrobial peptides (AMPs) having been successfully used for the control of several pathogenic bacteria, few studies have focused on the use of AMPs against Psa. In this study, the potential of six AMPs (BP100, RW-BP100, CA-M, 3.1, D4E1, and Dhvar-5) to control Psa was investigated. The minimal inhibitory and bactericidal concentrations (MIC and MBC) were determined and membrane damaging capacity was evaluated by flow cytometry analysis. Among the tested AMPs, the higher inhibitory and bactericidal capacity was observed for BP100 and CA-M with MIC of 3.4 and 3.4-6.2 mu M, respectively and MBC 3.4-10 mu M for both. Flow cytometry assays suggested a faster membrane permeation for peptide 3.1, in comparison with the other AMPs studied. Peptide mixtures were also tested, disclosing the high efficiency of BP100:3.1 at low concentration to reduce Psa viability. These results highlight the potential interest of AMP mixtures against Psa, and 3.1 as an antimicrobial molecule that can improve other treatments in synergic action.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Photoinactivation of Pseudomonas syringae pv. actinidiae in kiwifruit plants by cationic porphyrins
    Martins, Diana
    Mesquita, Mariana Q.
    Neves, Maria G. P. M. S.
    Faustino, Maria A. F.
    Reis, Luis
    Figueira, Etelvina
    Almeida, Adelaide
    PLANTA, 2018, 248 (02) : 409 - 421
  • [22] New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae)
    Donati, Irene
    Buriani, Giampaolo
    Cellini, Antonio
    Mauri, Sofia
    Costa, Guglielmo
    Spinelli, Francesco
    JOURNAL OF BERRY RESEARCH, 2014, 4 (02) : 53 - 67
  • [23] Evaluation of the wild Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae
    Wang, Fa-Ming
    Mo, Quan-Hui
    Ye, Kai-Yu
    Gong, Hong-Juan
    Qi, Bei-Bei
    Liu, Ping-Ping
    Jiang, Qiao-Sheng
    Li, Jie-Wei
    PLANT PATHOLOGY, 2020, 69 (06) : 979 - 989
  • [24] Occurrence of Pseudomonas syringae pv. actinidiae in An Tao kiwi plants in Italy
    Balestra, Giorgio M.
    Mazzaglia, Angelo
    Quattrucci, Alessio
    Renzi, Marsilio
    Rossetti, Antonio
    PHYTOPATHOLOGIA MEDITERRANEA, 2009, 48 (02) : 299 - 301
  • [25] Phylogenetic Relationships Among Global Populations of Pseudomonas syringae pv. actinidiae
    Chapman, J. R.
    Taylor, R. K.
    Weir, B. S.
    Romberg, M. K.
    Vanneste, J. L.
    Luck, J.
    Alexander, B. J. R.
    PHYTOPATHOLOGY, 2012, 102 (11) : 1034 - 1044
  • [26] Opportunities for environmental modification to control Pseudomonas syringae pv. actinidiae in kiwifruit
    Black, M. Z.
    Casonato, S.
    Bent, S.
    XXIX INTERNATIONAL HORTICULTURAL CONGRESS ON HORTICULTURE: SUSTAINING LIVES, LIVELIHOODS AND LANDSCAPES (IHC2014): INTERNATIONAL SYMPOSIA ON INNOVATIVE PLANT PROTECTION IN HORTICULTURE, BIOSECURITY, QUARANTINE PESTS, AND MARKET ACCESS, 2015, 1105 : 253 - 259
  • [27] Transcriptome Analysis of Kiwifruit in Response to Pseudomonas syringae pv. actinidiae Infection
    Wang, Tao
    Wang, Gang
    Jia, Zhan-Hui
    Pan, De-Lin
    Zhang, Ji-Yu
    Guo, Zhong-Ren
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (02)
  • [28] Photoinactivation of Pseudomonas syringae pv. actinidiae in kiwifruit plants by cationic porphyrins
    Diana Martins
    Mariana Q. Mesquita
    Maria G. P. M. S. Neves
    Maria A. F. Faustino
    Luís Reis
    Etelvina Figueira
    Adelaide Almeida
    Planta, 2018, 248 : 409 - 421
  • [29] Molecular characterisation of an endophyte showing a strong antagonistic activity against Pseudomonas syringae pv. actinidiae
    Rodanthi Tontou
    Francesca Gaggia
    Loredana Baffoni
    Giulia Devescovi
    Vittorio Venturi
    Davide Giovanardi
    Emilio Stefani
    Plant and Soil, 2016, 405 : 97 - 106
  • [30] Pseudomonas syringae pv. actinidiae: Ecology, Infection Dynamics and Disease Epidemiology
    Donati, Irene
    Cellini, Antonio
    Sangiorgio, Daniela
    Vanneste, Joel L.
    Scortichini, Marco
    Balestra, Giorgio M.
    Spinelli, Francesco
    MICROBIAL ECOLOGY, 2020, 80 (01) : 81 - 102