Memetic algorithms for feature selection on microarray data

被引:0
|
作者
Zhu, Zexuan [1 ,2 ]
Ong, Yew-Soon [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Div Informat Syst, Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Bioinformatics Res Ctr, Singapore 637553, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present two novel memetic algorithms (MAs) for gene selection. Both are synergies of Genetic Algorithm (wrapper methods) and local search methods (filter methods) under a memetic framework. In particular, the first MA is a Wrapper-Filter Feature Selection Algorithm (WFFSA) fine-tunes the population of genetic algorithm (GA) solutions by adding or deleting features based on univariate feature filter ranking method. The second MA approach, Markov Blanket-Embedded Genetic Algorithm (MBEGA), fine-tunes the population of solutions by adding relevant features, removing redundant and/or irrelevant features using Markov blanket. Our empirical studies on synthetic and real world microarray dataset suggest that both memetic approaches select more suitable gene subset than the basic CA and at the same time outperforms GA in terms of classification predictions. While the classification accuracies between WFFSA and MBEGA are not significantly statistically different on most of the datasets considered, MBEGA is observed to converge to more compact gene subsets than WFFSA.
引用
收藏
页码:1327 / +
页数:3
相关论文
共 50 条
  • [1] A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection
    Rojas, Matias Gabriel
    Olivera, Ana Carolina
    Carballido, Jessica Andrea
    Vidal, Pablo Javier
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2020, 18 (11) : 1874 - 1883
  • [2] Feature Selection using Memetic Algorithms
    Yang, Cheng-San
    Chuang, Li-Yeh
    Chen, Yu-Jung
    Yang, Cheng-Hong
    [J]. THIRD 2008 INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 416 - +
  • [3] Applying Memetic Algorithms to the analysis of microarray data
    Cotta, C
    Mendes, A
    Garcia, V
    Franço, P
    Moscato, P
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTING, 2003, 2611 : 22 - 32
  • [4] Stable feature selection and classification algorithms for multiclass microarray data
    Sebastian Student
    Krzysztof Fujarewicz
    [J]. Biology Direct, 7
  • [5] Stable feature selection and classification algorithms for multiclass microarray data
    Student, Sebastian
    Fujarewicz, Krzysztof
    [J]. BIOLOGY DIRECT, 2012, 7
  • [6] Comparing Multiobjective Evolutionary Algorithms for Cancer Data Microarray Feature Selection
    Sol Dussaut, Julieta
    Javier Vidal, Pablo
    Ponzoni, Ignacio
    Carolina Olivera, Ana
    [J]. 2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 149 - 156
  • [7] Multiobjective feature selection for microarray data via distributed parallel algorithms
    Cao, Bin
    Zhao, Jianwei
    Yang, Po
    Yang, Peng
    Liu, Xin
    Qi, Jun
    Simpson, Andrew
    Elhoseny, Mohamed
    Mehmoode, Irfan
    Muhammad, Khan
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 100 : 952 - 981
  • [8] A Study of Metaheuristic Algorithms for High Dimensional Feature Selection on Microarray Data
    Dankolo, Muhammad Nasiru
    Radzi, Nor Haizan Mohamed
    Sallehuddin, Roselina
    Mustaffa, Noorfa Haszlinna
    [J]. 13TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA2017), 2017, 1905
  • [9] Recursive Memetic Algorithm for gene selection in microarray data
    Ghosh, Manosij
    Begum, Shemim
    Sarkar, Ram
    Chakraborty, Debasis
    Maulik, Ujjwal
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 : 172 - 185
  • [10] Gene ordering in microarray data using parallel memetic algorithms
    Mendes, A
    Cotta, C
    Garcia, V
    França, P
    Moscato, P
    [J]. 2005 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS, PROCEEDINGS, 2005, : 604 - 611