Recursive Memetic Algorithm for gene selection in microarray data

被引:86
|
作者
Ghosh, Manosij [1 ]
Begum, Shemim [2 ]
Sarkar, Ram [1 ]
Chakraborty, Debasis [3 ]
Maulik, Ujjwal [1 ]
机构
[1] Jadavpur Univ, Comp Sci & Engn Dept, Kolkata, India
[2] Govt Coll Engn & Text Technol, Comp Sci & Engn Dept, Berhampur, W Bengal, India
[3] Murshidabad Coll Engn & Technol, Berhampur, W Bengal, India
关键词
Recursive memetic algorithm; Gene selection; Microarry data; Biomarker; Cancer classification; PROSTATE-CANCER; EXPRESSION; CLASSIFICATION; IDENTIFICATION; BIOMARKERS; PHENOTYPE; CRITERIA; MODEL;
D O I
10.1016/j.eswa.2018.06.057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection algorithm contributes a lot in the domain of medical diagnosis. Choosing a small subset of genes that enable a classifier to predict the presence or type of disease accurately is a difficult optimisation problem due to the size of the microarray data. The dual task of achieving higher accuracy and a small number of features makes it a challenging research problem. In our work, we have developed a Recursive Memetic Algorithm (RMA) model for selection of genes. It is a variant of Memetic Algorithm (MA) and performs much better than MA as well as Genetic Algorithm (GA). RMA has been applied on seven microarray datasets namely, AMLGSE2191, Colon, DLBCL, Leukaemia, Prostate, MLL and SRBCT. Encouraging results obtained by the proposed model, reported in this article, are biologically validated with the use of Gene Oncology, KEGG pathways and heat maps. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:172 / 185
页数:14
相关论文
共 50 条
  • [1] A recursive PSO scheme for gene selection in microarray data
    Prasad, Yamuna
    Biswas, K. K.
    Hanmandlu, M.
    [J]. APPLIED SOFT COMPUTING, 2018, 71 : 213 - 225
  • [2] A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection
    Rojas, Matias Gabriel
    Olivera, Ana Carolina
    Carballido, Jessica Andrea
    Vidal, Pablo Javier
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2020, 18 (11) : 1874 - 1883
  • [3] Analysis of recursive gene selection approaches from microarray data
    Li, F
    Yang, YM
    [J]. BIOINFORMATICS, 2005, 21 (19) : 3741 - 3747
  • [4] Memetic algorithms for feature selection on microarray data
    Zhu, Zexuan
    Ong, Yew-Soon
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 1, PROCEEDINGS, 2007, 4491 : 1327 - +
  • [5] Benchmarking a memetic algorithm for ordering microarray data
    Moscato, P.
    Mendes, A.
    Berretta, R.
    [J]. BIOSYSTEMS, 2007, 88 (1-2) : 56 - 75
  • [6] A novel forward gene selection algorithm for microarray data
    Du, Dajun
    Li, Kang
    Li, Xue
    Fei, Minrui
    [J]. NEUROCOMPUTING, 2014, 133 : 446 - 458
  • [7] Gene ordering in microarray data using parallel memetic algorithms
    Mendes, A
    Cotta, C
    Garcia, V
    França, P
    Moscato, P
    [J]. 2005 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS, PROCEEDINGS, 2005, : 604 - 611
  • [8] Hybridization of Genetic and Quantum Algorithm for Gene Selection and Classification of Microarray Data
    Abderrahim, Allani
    Talbi, El-Ghazali
    Khaled, Mellouli
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-5, 2009, : 2226 - +
  • [9] Gene Selection for Microarray Data by a LDA-Based Genetic Algorithm
    Huerta, Edmundo Bonilla
    Duval, Beatrice
    Hao, Jin-Kao
    [J]. PATTERN RECOGNITION IN BIOINFORMATICS, PROCEEDINGS, 2008, 5265 : 250 - 261
  • [10] A hybrid LDA and genetic algorithm for gene selection and classification of microarray data
    Bonilla Huerta, Edmundo
    Duval, Beatrice
    Hao, Jin-Kao
    [J]. NEUROCOMPUTING, 2010, 73 (13-15) : 2375 - 2383