Memetic algorithms for feature selection on microarray data

被引:0
|
作者
Zhu, Zexuan [1 ,2 ]
Ong, Yew-Soon [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Div Informat Syst, Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Bioinformatics Res Ctr, Singapore 637553, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present two novel memetic algorithms (MAs) for gene selection. Both are synergies of Genetic Algorithm (wrapper methods) and local search methods (filter methods) under a memetic framework. In particular, the first MA is a Wrapper-Filter Feature Selection Algorithm (WFFSA) fine-tunes the population of genetic algorithm (GA) solutions by adding or deleting features based on univariate feature filter ranking method. The second MA approach, Markov Blanket-Embedded Genetic Algorithm (MBEGA), fine-tunes the population of solutions by adding relevant features, removing redundant and/or irrelevant features using Markov blanket. Our empirical studies on synthetic and real world microarray dataset suggest that both memetic approaches select more suitable gene subset than the basic CA and at the same time outperforms GA in terms of classification predictions. While the classification accuracies between WFFSA and MBEGA are not significantly statistically different on most of the datasets considered, MBEGA is observed to converge to more compact gene subsets than WFFSA.
引用
收藏
页码:1327 / +
页数:3
相关论文
共 50 条
  • [41] A Discernibility-Based Approach to Feature Selection for Microarray Data
    Voulgaris, Zacharias
    Magoulas, George D.
    [J]. 2008 4TH INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 818 - 823
  • [42] Exploring the consequences of distributed feature selection in DNA microarray data
    Bolon-Canedo, Veronica
    Sechidis, Konstantinos
    Sanchez-Marono, Noelia
    Alonso-Betanzos, Amparo
    Brown, Gavin
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1665 - 1672
  • [43] Effective feature selection framework for cluster analysis of microarray data
    Pok, Gouchol
    Liu, Jyh-Charn Steve
    Ryu, Keun Ho
    [J]. BIOINFORMATION, 2010, 4 (08) : 385 - 389
  • [44] Feature selection in independent component subspace for microarray data classification
    Zheng, Chun-Hou
    huang, De-S Huang
    Shang, Li
    [J]. NEUROCOMPUTING, 2006, 69 (16-18) : 2407 - 2410
  • [45] Feature selection using differential evolution for microarray data classification
    Prajapati S.
    Das H.
    Gourisaria M.K.
    [J]. Discover Internet of Things, 2023, 3 (01):
  • [46] Feature Selection Using Counting Grids: Application to Microarray Data
    Lovato, Pietro
    Bicego, Manuele
    Cristani, Marco
    Jojic, Nebojsa
    Perina, Alessandro
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2012, 7626 : 629 - 637
  • [47] Robust Feature Selection for Microarray Data Based on Multicriterion Fusion
    Yang, Feng
    Mao, K. Z.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (04) : 1080 - 1092
  • [48] A hybrid feature selection approach for microarray gene expression data
    Tan, Feng
    Fu, Xuezheng
    Wang, Hao
    Zhang, Yanqing
    Bourgeois, Anu
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 678 - 685
  • [49] Parallel classification and feature selection in microarray data using SPRINT
    Mitchell, Lawrence
    Sloan, Terence M.
    Mewissen, Muriel
    Ghazal, Peter
    Forster, Thorsten
    Piotrowski, Michal
    Trew, Arthur
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (04): : 854 - 865
  • [50] An enhanced feature selection filter for classification of microarray cancer data
    Mazumder, Dilwar Hussain
    Veilumuthu, Ramachandran
    [J]. ETRI JOURNAL, 2019, 41 (03) : 358 - 370