Parallel classification and feature selection in microarray data using SPRINT

被引:10
|
作者
Mitchell, Lawrence [1 ]
Sloan, Terence M. [1 ]
Mewissen, Muriel [2 ]
Ghazal, Peter [2 ]
Forster, Thorsten [2 ]
Piotrowski, Michal [1 ]
Trew, Arthur [1 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, EPCC, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Med, Div Pathway Med, Edinburgh EH16 4SB, Midlothian, Scotland
来源
基金
英国工程与自然科学研究理事会; 英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
HIGH-DIMENSIONAL DATA; GENE-EXPRESSION; BIOINFORMATICS; SPACES;
D O I
10.1002/cpe.2928
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The statistical language R is favoured by many biostatisticians for processing microarray data. In recent times, the quantity of data that can be obtained in experiments has risen significantly, making previously fast analyses time consuming or even not possible at all with the existing software infrastructure. High performance computing (HPC) systems offer a solution to these problems but at the expense of increased complexity for the end user. The Simple Parallel R Interface is a library for R that aims to reduce the complexity of using HPC systems by providing biostatisticians with drop-in parallelised replacements of existing R functions. In this paper we describe parallel implementations of two popular techniques: exploratory clustering analyses using the random forest classifier and feature selection through identification of differentially expressed genes using the rank product method. Copyright © 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:854 / 865
页数:12
相关论文
共 50 条
  • [1] Feature selection using differential evolution for microarray data classification
    Prajapati S.
    Das H.
    Gourisaria M.K.
    [J]. Discover Internet of Things, 2023, 3 (01):
  • [2] Efficient feature selection and classification for microarray data
    Li, Zifa
    Xie, Weibo
    Liu, Tao
    [J]. PLOS ONE, 2018, 13 (08):
  • [3] Ensemble Feature Selection for Breast Cancer Classification using Microarray Data
    Hengpraprohm, Supoj
    Jungjit, Suwimol
    [J]. INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2020, 23 (65): : 100 - 114
  • [4] Improving classification accuracy of cancer types using parallel hybrid feature selection on microarray gene expression data
    Venkataramana, Lokeswari
    Jacob, Shomona Gracia
    Ramadoss, Rajavel
    Saisuma, Dodda
    Haritha, Dommaraju
    Manoja, Kunthipuram
    [J]. GENES & GENOMICS, 2019, 41 (11) : 1301 - 1313
  • [5] Improving classification accuracy of cancer types using parallel hybrid feature selection on microarray gene expression data
    Lokeswari Venkataramana
    Shomona Gracia Jacob
    Rajavel Ramadoss
    Dodda Saisuma
    Dommaraju Haritha
    Kunthipuram Manoja
    [J]. Genes & Genomics, 2019, 41 : 1301 - 1313
  • [6] Feature Selection for Cancer Classification on Microarray Expression Data
    Hsu, Hui-Huang
    Lu, Ming-Da
    [J]. ISDA 2008: EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 3, PROCEEDINGS, 2008, : 153 - 158
  • [7] Distributed feature selection: An application to microarray data classification
    Bolon-Canedo, V.
    Sanchez-Marono, N.
    Alonso-Betanzos, A.
    [J]. APPLIED SOFT COMPUTING, 2015, 30 : 136 - 150
  • [8] A novel parallel feature rank aggregation algorithm for gene selection applied to microarray data classification
    Longkumer, Imtisenla
    Mazumder, Dilwar Hussain
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 112
  • [9] A Clustering Approach for Feature Selection in Microarray Data Classification Using Random forest
    Aydadenta, Husna
    Adiwijaya
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2018, 14 (05): : 1167 - 1175
  • [10] Microarray Lung Cancer Data Classification Using Similarity based Feature Selection
    Amrane, Meriem
    Oukid, Saliha
    Ensari, Tolga
    Benblidia, Nadjia
    Orman, Zeynep
    [J]. 2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,