Parallel classification and feature selection in microarray data using SPRINT

被引:10
|
作者
Mitchell, Lawrence [1 ]
Sloan, Terence M. [1 ]
Mewissen, Muriel [2 ]
Ghazal, Peter [2 ]
Forster, Thorsten [2 ]
Piotrowski, Michal [1 ]
Trew, Arthur [1 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, EPCC, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Med, Div Pathway Med, Edinburgh EH16 4SB, Midlothian, Scotland
来源
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 英国工程与自然科学研究理事会;
关键词
HIGH-DIMENSIONAL DATA; GENE-EXPRESSION; BIOINFORMATICS; SPACES;
D O I
10.1002/cpe.2928
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The statistical language R is favoured by many biostatisticians for processing microarray data. In recent times, the quantity of data that can be obtained in experiments has risen significantly, making previously fast analyses time consuming or even not possible at all with the existing software infrastructure. High performance computing (HPC) systems offer a solution to these problems but at the expense of increased complexity for the end user. The Simple Parallel R Interface is a library for R that aims to reduce the complexity of using HPC systems by providing biostatisticians with drop-in parallelised replacements of existing R functions. In this paper we describe parallel implementations of two popular techniques: exploratory clustering analyses using the random forest classifier and feature selection through identification of differentially expressed genes using the rank product method. Copyright © 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:854 / 865
页数:12
相关论文
共 50 条
  • [21] Gene Selection Using Parallel Lion Optimization Method in Microarray Data for Cancer Classification
    Sampathkumar, A.
    Vivekanandan, P.
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (06) : 1294 - 1300
  • [22] Multiobjective feature selection for microarray data via distributed parallel algorithms
    Cao, Bin
    Zhao, Jianwei
    Yang, Po
    Yang, Peng
    Liu, Xin
    Qi, Jun
    Simpson, Andrew
    Elhoseny, Mohamed
    Mehmoode, Irfan
    Muhammad, Khan
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 100 : 952 - 981
  • [23] Model and feature selection in microarray classification
    Peterson, DA
    Thaut, MH
    [J]. PROCEEDINGS OF THE 2004 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2004, : 56 - 60
  • [24] FEATURE SELECTION FOR MICROARRAY DATA USING PROBABILITY DISTANCES
    Korenblat, K.
    Volkovich, Z.
    [J]. JP JOURNAL OF BIOSTATISTICS, 2012, 7 (01) : 15 - 34
  • [25] Microarray classification with hierarchical data representation and novel feature selection criteria
    Bosio, Mattia
    Bellot, Pau
    Salembier, Philippe
    Oliveras Verges, Albert
    [J]. IEEE 12TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS & BIOENGINEERING, 2012, : 344 - 349
  • [26] An Approach Based on Resampling and Feature Selection to Improve the Classification of Microarray Data
    Soleymani, Nafiseh
    Moattar, Mohammad Hussein
    [J]. 2018 6TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), 2018, : 61 - 64
  • [27] FEATURE SELECTION BY WEIGHTED-SNR FOR CANCER MICROARRAY DATA CLASSIFICATION
    Hengpraprohm, Supoj
    Chongstitvatana, Prabhas
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (12A): : 4627 - 4635
  • [28] Linear regression-based feature selection for microarray data classification
    Hasan, Md Abid
    Hasan, Md Kamrul
    Mottalib, M. Abdul
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2015, 11 (02) : 167 - 179
  • [29] Iterative ensemble feature selection for multiclass classification of imbalanced microarray data
    Yang, Junshan
    Zhou, Jiarui
    Zhu, Zexuan
    Ma, Xiaoliang
    Ji, Zhen
    [J]. JOURNAL OF BIOLOGICAL RESEARCH-THESSALONIKI, 2016, 23
  • [30] Feature Genes Selection and Classification with SVM for Microarray Data of Lung Tissue
    Du, Si-Hao
    Jeng, Jin-Tsong
    Su, Shun-Feng
    Hsiao, Chih-Ching
    [J]. 2014 JOINT 7TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 15TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2014, : 1054 - 1058