Feature Selection using Memetic Algorithms

被引:19
|
作者
Yang, Cheng-San [1 ]
Chuang, Li-Yeh [2 ]
Chen, Yu-Jung [3 ]
Yang, Cheng-Hong [3 ]
机构
[1] Natl Cheng Kung Univ, Inst Biomed Engn, Tainan 70101, Taiwan
[2] I Shou Univ, Dept Chem Engn, Kaohsiung, Taiwan
[3] Natl Kaohsiung Univ Appl Sci, Dept Comp Sci & Informat Engn, Kaohsiung, Taiwan
关键词
D O I
10.1109/ICCIT.2008.81
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The feature selection process can be considered a problem of global combinatorial optimization in machine learning, which reduces the number of features, removes irrelevant, noisy and redundant data, and results in acceptable classification accuracy. In this study, we propose a combined filter method (ReliefF) and a wrapper method (memetic algorithm, AM) for classification. The goal of our method is to filter the irrelevant features and select the most important feature subsets. We used the ReliefF algorithm to calculate and update the scores of every feature for each data set, and then applied a AM for feature selection. The K-nearest neighbor (K-NN) method with leave-one-out cross-validation (LOOCV) serves as a classifier for evaluating classification accuracies. The experimental results show that the proposed method is superior to existing methods in terms of classification accuracy.
引用
收藏
页码:416 / +
页数:3
相关论文
共 50 条
  • [1] Memetic algorithms for feature selection on microarray data
    Zhu, Zexuan
    Ong, Yew-Soon
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 1, PROCEEDINGS, 2007, 4491 : 1327 - +
  • [2] Memetic multilabel feature selection using pruned refinement process
    Seo, Wangduk
    Park, Jaegyun
    Lee, Sanghyuck
    Moon, A-Seong
    Kim, Dae-Won
    Lee, Jaesung
    [J]. JOURNAL OF BIG DATA, 2024, 11 (01)
  • [3] An adaptive memetic algorithm for feature selection using proximity graphs
    Abu Zaher, Amer
    Berretta, Regina
    Noman, Nasimul
    Moscato, Pablo
    [J]. COMPUTATIONAL INTELLIGENCE, 2019, 35 (01) : 156 - 183
  • [4] Towards a Memetic Feature Selection Paradigm
    Zhu, Zexuan
    Jia, Sen
    Ji, Zhen
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2010, 5 (02) : 41 - 53
  • [5] A Novel Memetic Feature Selection Algorithm
    Montazeri, Mohadeseh
    Naji, Hamid Reza
    Montazeri, Mitra
    Faraahi, Ahmad
    [J]. 2013 5TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2013, : 295 - 300
  • [6] Wrapper-filter feature selection algorithm using a memetic framework
    Zhu, Zexuan
    Ong, Yew-Soon
    Dash, Manoranjan
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (01): : 70 - 76
  • [7] Unsupervised Text Feature Selection Using Memetic Dichotomous Differential Evolution
    Al-Jadir, Ibraheem
    Wong, Kok Wai
    Fung, Chun Che
    Xie, Hong
    [J]. ALGORITHMS, 2020, 13 (06)
  • [8] Improving feature selection algorithms using normalised feature histograms
    James, A. P.
    Maan, A. K.
    [J]. ELECTRONICS LETTERS, 2011, 47 (08) : 490 - 491
  • [9] Memetic Feature Selection: Benchmarking Hybridization Schemata
    Esseghir, M. A.
    Goncalves, Gilles
    Slimani, Yahya
    [J]. HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 1, 2010, 6076 : 351 - +
  • [10] Comparison of classification algorithms using feature selection
    Juarez-Lopez, Alexander
    Hernandez-Torruco, Jose
    Hernandez-Ocana, Betania
    Chavez-Bosquez, Oscar
    [J]. 2021 MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE (ENC 2021), 2021,