Ball packings for links

被引:2
|
作者
Alfonsin, Jorge L. Ramirez [1 ,2 ]
Rasskin, Ivan [2 ]
机构
[1] CNRS IMPA, UMI2924, Santos, Brazil
[2] Univ Montpellier, CNRS, IMAG, Montpellier, France
关键词
NUMBERS; GRAPHS;
D O I
10.1016/j.ejc.2021.103351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The ball number of a link L, denoted by ball(L), is the minimum number of solid balls (not necessarily of the same size) needed to realize a necklace representing L. In this paper, we show that ball(L) <= 5cr(L) where cr(L) denotes the crossing number of a nontrivial nonsplittable link L. To this end, we use the connection of the Lorentz geometry with the ball packings. The well-known Koebe-Andreev-Thurston circle packing Theorem is also an important brick for the proof. Our approach yields an algorithm to construct explicitly the desired necklace representation of L in R-3. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Segments in ball packings
    Henk, M
    Zong, C
    MATHEMATIKA, 2000, 47 (93-94) : 31 - 38
  • [2] On the deformation of ball packings
    Ge, Huabin
    Jiang, Wenshuai
    Shen, Liangming
    ADVANCES IN MATHEMATICS, 2022, 398
  • [3] Edge close ball packings
    Böröczky, K
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 26 (01) : 59 - 71
  • [4] Ball Packings with Periodic Constraints
    Connelly, Robert
    Shen, Jeffrey D.
    Smith, Alexander D.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (04) : 754 - 779
  • [5] Ball Packings with Periodic Constraints
    Robert Connelly
    Jeffrey D. Shen
    Alexander D. Smith
    Discrete & Computational Geometry, 2014, 52 : 754 - 779
  • [6] Contact graphs of ball packings
    Glazyrin, Alexey
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 323 - 340
  • [7] Edge close ball packings
    Böröczky K.
    Discrete & Computational Geometry, 2001, 26 (1) : 59 - 71
  • [8] Links in orthoplicial Apollonian packings
    Alfonsin, Jorge L. Ramirez
    Rasskin, Ivan
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 122
  • [9] On free planes in lattice ball packings
    Henk, M
    Ziegler, GM
    Zong, CM
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 : 284 - 290
  • [10] Apollonian Ball Packings and Stacked Polytopes
    Hao Chen
    Discrete & Computational Geometry, 2016, 55 : 801 - 826