Ball packings for links

被引:2
|
作者
Alfonsin, Jorge L. Ramirez [1 ,2 ]
Rasskin, Ivan [2 ]
机构
[1] CNRS IMPA, UMI2924, Santos, Brazil
[2] Univ Montpellier, CNRS, IMAG, Montpellier, France
关键词
NUMBERS; GRAPHS;
D O I
10.1016/j.ejc.2021.103351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The ball number of a link L, denoted by ball(L), is the minimum number of solid balls (not necessarily of the same size) needed to realize a necklace representing L. In this paper, we show that ball(L) <= 5cr(L) where cr(L) denotes the crossing number of a nontrivial nonsplittable link L. To this end, we use the connection of the Lorentz geometry with the ball packings. The well-known Koebe-Andreev-Thurston circle packing Theorem is also an important brick for the proof. Our approach yields an algorithm to construct explicitly the desired necklace representation of L in R-3. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Maximal Ball Packings of Symplectic-Toric Manifolds
    Pelayo, Alvaro
    Schmidt, Benjamin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [22] CLASSICAL AND GENERALIZED SYMMETRY IN SYMBOLICS OF THE CLOSEST BALL PACKINGS
    ZALUTSKY, II
    KRISTALLOGRAFIYA, 1985, 30 (06): : 1045 - 1049
  • [23] Lorentzian Coxeter systems and Boyd-Maxwell ball packings
    Chen, Hao
    Labbe, Jean-Philippe
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 43 - 73
  • [24] Ball packings in spaces of constant curvature and the simplicial density function
    Kellerhals, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 494 : 189 - 203
  • [25] VORONOI POLYHEDRA OF UNIT BALL PACKINGS WITH SMALL SURFACE AREA
    Károly Bezdek
    Endre Daróczy Kiss
    Kai Ju Liu
    Periodica Mathematica Hungarica, 2000, 39 (1-3) : 107 - 118
  • [26] Lattice-like translation ball packings in Nil space
    Szirmai, Jeno
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (3-4): : 427 - 440
  • [27] Density bounds for outer parallel domains of unit ball packings
    Bezdek, Karoly
    Langi, Zsolt
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 (01) : 209 - 225
  • [28] Density bounds for outer parallel domains of unit ball packings
    Károly Bezdek
    Zsolt Lángi
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 209 - 225
  • [29] Links for ball bearings and residual stress
    NovoselRadovic, VJ
    Kostelac, M
    Radovic, N
    HrvatovCrljenica, N
    METALURGIJA, 1996, 35 (03): : 151 - 155
  • [30] Even More Infinite Ball Packings from Lorentzian Coxeter Systems
    Chen, Hao
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):