Ball packings for links

被引:2
|
作者
Alfonsin, Jorge L. Ramirez [1 ,2 ]
Rasskin, Ivan [2 ]
机构
[1] CNRS IMPA, UMI2924, Santos, Brazil
[2] Univ Montpellier, CNRS, IMAG, Montpellier, France
关键词
NUMBERS; GRAPHS;
D O I
10.1016/j.ejc.2021.103351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The ball number of a link L, denoted by ball(L), is the minimum number of solid balls (not necessarily of the same size) needed to realize a necklace representing L. In this paper, we show that ball(L) <= 5cr(L) where cr(L) denotes the crossing number of a nontrivial nonsplittable link L. To this end, we use the connection of the Lorentz geometry with the ball packings. The well-known Koebe-Andreev-Thurston circle packing Theorem is also an important brick for the proof. Our approach yields an algorithm to construct explicitly the desired necklace representation of L in R-3. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条