On free planes in lattice ball packings

被引:2
|
作者
Henk, M
Ziegler, GM
Zong, CM
机构
[1] Univ Magdeburg, Fachbereich Math IMO, D-39106 Magdeburg, Germany
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Tech Univ Berlin, Fachbereich Math MA 7 1, D-10623 Berlin, Germany
基金
中国国家自然科学基金;
关键词
D O I
10.1112/S0024609301008888
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note, by studying the relations between the length of the shortest lattice vectors and the covering minima of a lattice, proves that for every d-dimensional packing lattice of balls one can find a four-dimensional plane, parallel to a lattice plane, such that the plane meets none of the balls of the packing, provided that the dimension d is large enough. Nevertheless, for certain ball packing lattices, the highest dimension of such 'free planes' is far from d.
引用
收藏
页码:284 / 290
页数:7
相关论文
共 50 条
  • [1] Free planes in lattice sphere packings
    Henk, M
    ADVANCES IN GEOMETRY, 2005, 5 (01) : 137 - 144
  • [2] Lattice-like translation ball packings in Nil space
    Szirmai, Jeno
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (3-4): : 427 - 440
  • [3] Segments in ball packings
    Henk, M
    Zong, C
    MATHEMATIKA, 2000, 47 (93-94) : 31 - 38
  • [4] On the deformation of ball packings
    Ge, Huabin
    Jiang, Wenshuai
    Shen, Liangming
    ADVANCES IN MATHEMATICS, 2022, 398
  • [5] Ball packings for links
    Alfonsin, Jorge L. Ramirez
    Rasskin, Ivan
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 96
  • [6] Edge close ball packings
    Böröczky, K
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 26 (01) : 59 - 71
  • [7] Ball Packings with Periodic Constraints
    Connelly, Robert
    Shen, Jeffrey D.
    Smith, Alexander D.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (04) : 754 - 779
  • [8] Ball Packings with Periodic Constraints
    Robert Connelly
    Jeffrey D. Shen
    Alexander D. Smith
    Discrete & Computational Geometry, 2014, 52 : 754 - 779
  • [9] Contact graphs of ball packings
    Glazyrin, Alexey
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 323 - 340
  • [10] Edge close ball packings
    Böröczky K.
    Discrete & Computational Geometry, 2001, 26 (1) : 59 - 71