On free planes in lattice ball packings

被引:2
|
作者
Henk, M
Ziegler, GM
Zong, CM
机构
[1] Univ Magdeburg, Fachbereich Math IMO, D-39106 Magdeburg, Germany
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Tech Univ Berlin, Fachbereich Math MA 7 1, D-10623 Berlin, Germany
基金
中国国家自然科学基金;
关键词
D O I
10.1112/S0024609301008888
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note, by studying the relations between the length of the shortest lattice vectors and the covering minima of a lattice, proves that for every d-dimensional packing lattice of balls one can find a four-dimensional plane, parallel to a lattice plane, such that the plane meets none of the balls of the packing, provided that the dimension d is large enough. Nevertheless, for certain ball packing lattices, the highest dimension of such 'free planes' is far from d.
引用
收藏
页码:284 / 290
页数:7
相关论文
共 50 条
  • [41] STRUCTURAL PROPERTIES OF LATTICE PLANES
    JASWON, MA
    ACTA CRYSTALLOGRAPHICA, 1954, 7 (10): : 676 - 677
  • [42] On visualizing crystal lattice planes
    Aravind, P. K.
    AMERICAN JOURNAL OF PHYSICS, 2006, 74 (09) : 794 - 799
  • [43] A NOTE ON THE GEOMETRY OF LATTICE PLANES
    DEAS, HD
    HAMILL, CM
    ACTA CRYSTALLOGRAPHICA, 1957, 10 (09): : 541 - 542
  • [44] TWINNING PROPERTIES OF LATTICE PLANES
    JASWON, MA
    DOVE, DB
    ACTA CRYSTALLOGRAPHICA, 1956, 9 (07): : 621 - 626
  • [45] Spherical Lagrangians via ball packings and symplectic cutting
    Matthew Strom Borman
    Tian-Jun Li
    Weiwei Wu
    Selecta Mathematica, 2014, 20 : 261 - 283
  • [46] Spherical Lagrangians via ball packings and symplectic cutting
    Borman, Matthew Strom
    Li, Tian-Jun
    Wu, Weiwei
    SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (01): : 261 - 283
  • [47] Lorentzian Coxeter systems and Boyd–Maxwell ball packings
    Hao Chen
    Jean-Philippe Labbé
    Geometriae Dedicata, 2015, 174 : 43 - 73
  • [48] Maximal Ball Packings of Symplectic-Toric Manifolds
    Pelayo, Alvaro
    Schmidt, Benjamin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [49] CLASSICAL AND GENERALIZED SYMMETRY IN SYMBOLICS OF THE CLOSEST BALL PACKINGS
    ZALUTSKY, II
    KRISTALLOGRAFIYA, 1985, 30 (06): : 1045 - 1049
  • [50] Finite lattice packings and the Wulff-shape
    Betke, Ulrich
    Boroczky, Karoly, Jr.
    MATHEMATIKA, 2005, 52 (103-04) : 17 - 29