Splitting of asymptotic manifolds in some Hamiltonian systems with two degrees of freedom

被引:0
|
作者
Novik, AO [1 ]
Treshchev, DV [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:47 / 49
页数:3
相关论文
共 50 条
  • [21] Geometric description of chaos in two-degrees-of-freedom Hamiltonian systems
    CerrutiSola, M
    Pettini, M
    PHYSICAL REVIEW E, 1996, 53 (01): : 179 - 188
  • [22] A necessary condition for the integrability of homogeneous Hamiltonian systems with two degrees of freedom
    Nakagawa, K
    Yoshida, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (11): : 2137 - 2148
  • [23] Stability of Nearly Integrable, Degenerate Hamiltonian Systems with Two Degrees of Freedom
    L. Biasco
    L. Chierchia
    D. Treschev
    Journal of Nonlinear Science, 2006, 16 : 79 - 107
  • [24] Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions
    C. Doss-Bachelet
    J. P. Françoise
    Theoretical and Mathematical Physics, 2000, 122 : 170 - 175
  • [25] QUANTIZATION OF SYSTEMS WITH INTERNAL DEGREES OF FREEDOM IN TWO-DIMENSIONAL MANIFOLDS
    Rozko, Ewa Eliza
    Gobcewicz, Ewa
    REPORTS ON MATHEMATICAL PHYSICS, 2014, 73 (03) : 325 - 343
  • [26] INVARIANT-MANIFOLDS AND PERIODIC-SOLUTIONS OF 3 DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS
    VERHULST, F
    LECTURE NOTES IN PHYSICS, 1984, 195 : 413 - 422
  • [27] On Resonances in Hamiltonian Systems with Three Degrees of Freedom
    Alexander A. Karabanov
    Albert D. Morozov
    Regular and Chaotic Dynamics, 2019, 24 : 628 - 648
  • [28] On Resonances in Hamiltonian Systems with Three Degrees of Freedom
    Karabanov, Alexander A.
    Morozov, Albert D.
    REGULAR & CHAOTIC DYNAMICS, 2019, 24 (06): : 628 - 648
  • [29] On the Stability of Equilibria in Two-Degrees-of- Freedom Hamiltonian Systems Under Resonances
    A. Elipe
    V. Lanchares
    A.I. Pascual
    Journal of Nonlinear Science, 2005, 15 : 305 - 319
  • [30] Diffusion and scaling in escapes from two-degrees-of-freedom Hamiltonian systems
    Kandrup, HE
    Siopis, C
    Contopoulos, G
    Dvorak, R
    CHAOS, 1999, 9 (02) : 381 - 392