On the Stability of Equilibria in Two-Degrees-of- Freedom Hamiltonian Systems Under Resonances

被引:0
|
作者
A. Elipe
V. Lanchares
A.I. Pascual
机构
[1] Grupo de Mecanica Espacial,
[2] Universidad de Zaragoza,undefined
[3] 50009 Zaragoza,undefined
[4] Dept. Matematicas y Computacion,undefined
[5] Universidad de La Rioja,undefined
[6] 26004 Logrono,undefined
来源
关键词
Nonlinear stability; Normal forms;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of stability of equilibrium points in Hamiltonian systems of two degrees of freedom under resonances. Determining the stability or instability is based on a geometrical criterion based on how two surfaces, related with the normal form, intersect one another. The equivalence of this criterion with a result of Cabral and Meyer is proved. With this geometrical procedure, the hypothesis may be extended to more general cases.
引用
收藏
页码:305 / 319
页数:14
相关论文
共 50 条